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1 — Motivation

Adaptive survey designs have been studied for some years. The designs essentially attempt to reduce
the impact of nonresponse error given an available budget. They employ (more) explicit quality and
cost functions, and, most, importantly, identify different relevant strata to which design features are
adapted or tailored.

The reduction of nonresponse error impact comes through reduced adjustment weight variation, i.e.
increasing precision, and through improved balance or representativeness, i.e. decreasing bias. As such
adaptive survey design adjusts nonresponse by design, rather than just by estimation alone.

To date, implementation of adaptive survey designs is still very modest and mostly experimental. The
reasons are twofold. First, in general, any manipulation of actual data collection designs is very hard
and has to pass organizational and IT barriers. Second, the ability to reduce bias is debated because the
same auxiliary variables can also used in the estimation afterwards, and the explanatory power of these
variables is often relatively weak.

In the paper, | will discuss theoretical conditions for the efficacy of adaptive survey designs in
reducing bias, even after adjustment afterwards in the estimation. 1 will show that auxiliary variables
do not necessarily need to have a strong explanatory power in order to detect whether a design needs
to be favoured to another.

There have been two crucial and very influential developments in statistical theory over the last half
century: missing data inference and causal inference. The well-known missing data mechanisms
Missing-Completely-at-Random, Missing-at-Random and Not-Missing-at-Random (Little and Rubin
2002) and variants of them, see Seaman et al (2013), appear frequently in the literature. They provide
sufficient and necessary conditions to separate the confounding of selection and measurement, or
selection and treatment, in case part of the data is missing. These conditions are formulated in terms of
the variables of interest and variables that are auxiliary to the study. However, both statistical
inference with missing data and causal inference treat the variables that are studied in the data as fixed
and given, and the generation of the variables themselves is not modelled. As a consequence,
sufficient conditions are available to ignore missing data, but one may fail to come up with variables
that actually satisfy these conditions or motivate why they should hold. This paper is motivated by the
conviction that the nature of the variables themselves and the way in which they are generated needs to
be modelled in order to understand the validity of assumptions underlying to statistical inference. The
paper seeks to model the nature with which variables are generated and with which associations occur
between them. In the model, an important role is played by the diversity and uniformity of a
population. The framework is applied and demonstrated in the setting of survey nonresponse. Without
a complete theory about the causes for nonresponse, it must be accepted that the available auxiliary
variables do not guarantee a missing-at-random mechanism. The framework presented here gives
conditions to extrapolate the traces of bias found by auxiliary variables to other variables, i.e. to not-
missing-at-random mechanisms. The motivation for this paper comes from the pursuit to reduce the
impact of nonresponse in surveys through so-called adaptive survey designs (Schouten, Calinescu,
Luiten 2013, Wagner et al 2013 and Sérndal and Lundquist 2014). The designs assume that detectable
bias due to nonresponse is a signal of even larger biases on variables of interest to the survey.



Typically, the proportion of explained variation in nonresponse by such variables is rather low, and the
designs are often criticized for removing nonresponse bias during the data collection stage that could
equally well be removed in the estimation or adjustment stage. It is explained in this paper that the
theoretical results provide conditions for the efficacy of such designs to remove bias, even after
adjustment.

2 — A framework for the generation of variables on a population
2.1 — Population diversity and uniformity

Suppose there is a population of interest on which measurements can be made using a set of potential
instruments and that the measurements are termed variables once they are stored. Suppose the
population arose, either by construction or by evolution, as a random draw from G strata, labelled
g = 1,2,3,...,G, with relative stratum sizes qg, i.e. Zg=1 qg = 1. The strata have the same value on all
possible variables. Then population diversity and population uniformity are defined as the number of
strata and the variation in stratum sizes:

Definition: The diversity of a population, G, is the number of strata in which a population can be
divided so that all population units are identical, i.e. have the same value on all possible variables.

The uniformity of a population, U, is definedas U = 1 — Zg=1(qg — %)2.

Clearly, population units are never fully identical; some instruments make continuous measurements
and the corresponding variables have continuous measurement levels. So can G be finite or even
countable? One could clearly argue that truly continuous measurements do not exist and that one
always measures on some very fine grid. However, that would just be a diversion and there are two
real arguments why it is natural to have a finite number of strata. The arguments relate to the purpose
of measurements. First, there are no continuous measurements that are stable for a meaningful
duration of time; measurements will lead to small changes when repeated in short time intervals and
one will not view such changes as relevant. Second, and more importantly, there is a limit to what
level is relevant to a measurer regardless of time; beyond a certain level there is no control or
manipulation. These observations lead to two conclusions: First, diversity and uniformity change in
time. They will usually do so very gradually, but sometimes also with shocks due to
immigration/emigration and births/deaths. Second, the actual values that population units have on a
variable may be contaminated by non-relevant noise.

The diversity is bounded by the actual size of the population, say N. The set of available instruments at
a given time, obviously, limit the estimation of the diversity and uniformity of a population. A
population by itself may be defined as a set of identifiable objects on which measurements can be
made. Hence, at least one instrument has already been applied to demarcate the set of objects.

2.2 — The generation of variables on a population

The number of variables that can be formed on a population can be very large, while the number of
available variables in a data set is typically relatively small. As a result, it is pointless, or even
meaningless, to attempt to construct various families of variable generating distributions and to derive
empirically to what family a set of variables belongs. Two subclasses of such distributions, uniform
grouping and clustered grouping, may be sufficiently general. First, some basic notation is introduced.

An instrument is a random grouping of strata from the set g. Let s, be the indicator representing to
what group stratum g is assigned, and let s = (s4, 55, ..., s¢)7 be the vector of indicators. Let C be the



(random) number of groupings or categories of the resulting variable. Let p(C, s) represent a random
grouping probability distribution defined on {2} x {1,2}¢ U {3} x {1,2,3}° U ..U {G} x g°. Let &,
be the 0-1 indicator for the event {s;, = c}. Finally, let Cy,,, be the smallest ¢ with p[C > c] = 0. The
resulting clusters of population strata represent a variable, say Z, with category labels that result from
the binding characteristics of the strata and that depend on the instrument measurement level. As a
result, each population stratum g has a label z,, which is constant for all g in the same cluster, i.e.
zg = zg, ifIcwith§, =64, =1

Multiple instruments, labelled m =1,2,...,M, are independent draws from possibly different
distributions p,,(C,s), and lead to series of variables Z;,Z,,Z5,...,Zy. The population stratum
covariance between two realizations of variables, say Z; and Z,, will be denoted by I'(Z;, Z,), with

1 1 1
['(Z1,2Z;) = 522:1 21,922, — (522:1 Zl,g) (522:1 ZZ,g)-

One important observation is made that will be very helpful in the following: Any combination of
multiple variables through a crossing of the categories could be generated directly from one draw of
some random grouping distribution on the population. Consequently, theorems about the properties of
a single randomly drawn variable generalize to multiple independently drawn variables.

A natural subclass of grouping distributions are distributions that have equal assignment probabilities
for all strata in g. They are termed uniform grouping and are defined as follows:

Definition: p(C, s) is a uniform grouping distribution if conditional on the number of groups C the
strata are assigned following a multinomial distribution with sample size parameter ¢ and some cell
probabilities, say A5, A5, ..., A&,

Hence, the family of uniform grouping distributions is a mixture of multinomial distributions where
the mixture is defined by the marginal distribution p(C). This family conforms to a quasi-random
selection of variables. Note, however, that some groups may not be assigned any strata and remain
empty. Let the random variable C, denote the number of non-empty strata.

Uniform grouping distributions with unequal stratum assignment probabilities correspond to targeted
selections of variables. However, as long as stratum assignment probabilities are unequal to zero or
one, all variables have a non-zero probability to be selected. This is different when such probabilities
are simultaneously equal to zero or one for at least two strata in the population. This is termed
clustered grouping.

Definition: p(C, s) is a clustered grouping distribution if 3g,, g, for which p(sg1 = sgz) =1.

Clustered grouping distributions imply that two strata can never be discerned, i.e. the experimenter has
no instrument that enables separation of the two sets of elements. It should be noted that also for non-
clustered grouping distributions it may occur by chance that two strata are not separated by any of the
selected measurements and appear in the same category of the resulting variables. Again it holds that a
combination of variables generated from (non-)clustered grouping distributions is generated from a
(non-)clustered grouping.

2.3 — Associations between randomly generated variables

Suppose that an analysis is directed at explaining a variable of interest Y using auxiliary variables
(X1, X5, ..., Xy)T. For the sake of demonstration, let Y be quantitative, i.e. its category labels Vg
correspond to measurement values. A researcher may then be interested in the variance S2(Yy), where
Yy is the projection of Y on the space formed by the variables (X;, X5, ..., X3)7.



Let the projection for stratum g, Yy 4, be defined as

6 Zg:l 6h,thyh (1)

YX = C_
9 c=17g,c 22:15h,CQh '

with y, the value of Y on stratum g. Next, let Yy be the average of the projected values and let S%(y)

be variance of the measurement values of Y. It is easy to show that Yy, = ¥ always holds, regardless of
the grouping distribution.

The following theorem applies (with C, the number of non-empty strata):

Theorem 1: If X is generated from a uniform grouping distribution, then it holds approximately that

G(EC4-1)
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I, additionally, T'(q2, (v, — ¥)?) = 0 and I'(q,, (v, — ¥)?) = 0, then
ES?(Yy) = {EA-L2 52y )

It can be shown that theorem 1 also applies to series of variables. The size of the cell probabilities
26,25, /’lg in the uniform grouping is irrelevant. Hence, it does not matter whether cells are formed
at very different sizes or nearly equal sizes. The two conditions I'(q3, (yg —-¥)?) =0and I'(qg, (yg —

37)2) = 0 are very similar in nature and assume a lack of relation between stratum sizes and deviances
between the y, and their mean. When the stratum sizes are equal, i.e. q; = % then the conditions hold.

For clustered uniform grouping, a similar result can be derived. Let the grouping distribution have K
clusters of strata, labelled k = 1,2, ..., K, let Q) be the size of cluster k, i.e. the sum of the g, in cluster
k, and y;. be the average of Y in cluster k weighted by the q,. Theorem 2 is the analogue of theorem 1.

Theorem 2: If X is generated from a clustered uniform grouping distribution, then by approximation
ES?(Yy) = “EAZUNK | 02 (5 - 7)? @
with S3(y) the between variance based on the clusters and D, = Y¥-, Qz. If, additionally,

F'(Qk Gk — 73 = 0 and T'(Qx, (Fx — 7)?) = 0, then
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Theorem 2 can be extended to series of variables generated from clustered, uniform grouping
distributions, i.e. sampled from the same subset of variables.

ESZ(YX) =

3 — Application to nonresponse in surveys
3.1 — Detection of general bias due to nonresponse

Suppose that the objective is to detect bias due to nonresponse in a survey, and that the variables of
interest are diffuse and large in number. In this setting, the interest is not in bias on a specific variable
of interest. A vector of auxiliary variables, (X;, X, ..., X),)7, is available and p represents the response
probability of a population element. The focus may then be on the coefficient of variation of the
response probabilities, CV(p) = S(p)/p , as a general measure of risk of nonresponse bias. It is easy



to show that CV (p) bounds the standardized absolute bias of any arbitrary variable, say Y. The bias of
the mean of Y due to nonresponse, B(Y), divided by its standard deviation, is approximately equal to

[BON| _ [cov(¥,p)l
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Schouten, Cobben, Lundquist and Wagner (2014) show that the square root of the difference between
the squared coefficients of variation of the true response probabilities and the response propensities,

JCVZ(o) — ECVZ(py) ®)

appears as a general term in the maximal absolute remaining nonresponse bias for most commonly
used adjustment estimators. They show that the maximal absolute remaining bias of the expansion
estimator, the generalized regression estimator, the inverse propensity weighting estimator, and the
doubly robust estimator all are proportional to (8) so that ECV?(py) is also a crucial term in
nonresponse adjusted estimates.

If one would be able to measure the p and when they are all strictly positive, then nonresponse bias on
any variable can be removed. The actual realization of a survey may be seen as an instrument that
measures this variable. However, it is a far from perfect instrument as per element only one realization
is available, and it is, hence, contaminated by random, circumstantial influences. For this reason,
researchers usually move towards the response propensity py, i.e. the projection of p on the space
spanned by the auxiliary variables (Rosenbaum and Rubin 1983). Now, let in the theorems, y, = p,
be the variable that needs to be explained.

When X is constructed by uniform grouping, then theorem 1 gives that

G(EC4-1)D
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when T(qZ, (p; —P)*) =0 and T(qy, (py —p)*) = 0. In the following, it is assumed that the
covariances are negligibly small. This is reasonable as the diversity of most survey target populations

may be expected to be relatively large and the g, to be relatively small and close in size. Given that

—_~ 1, (8) can be rewritten to

G-1
JCV2(p) — ECV2(py) = /1= (EC, — 1)DCV(p) = /1 ~Geoop ECVen)- (10)

This allows for an important conclusion: When two different survey or data collection designs lead to
different CV(py) and when the variables (X;, X5, ..., Xy)T follow a uniform grouping distribution,
then the design with the lowest value is to be preferred; a lower value implies that the expected
remaining bias after adjustment with X using a range of estimators is also smaller for an arbitrary other
variable.

A natural follow-up question is whether it is sensible to pursue a survey response with a smaller
CV(pyx) in the data collection stage. It is shown that, again under uniform grouping, this is true. In
adaptive survey designs, different strata, identified using auxiliary variables, get different treatments.
Schouten et al (2013) suggest to formulate the allocation problem as a mathematical optimization
problem with CV (py) as objective function, subject to cost, precision and logistical constraints. Within
the range of designs that satisfy the constraints, the optimization prefers a design that has smallest



CV(pyx). Say, for example, T strategies are available, labelled d = 1,2, ..., T, where design d has
response probabilities p;. The optimization creates a mix of these strategies based on the observed
response propensities py 4, d = 1,2,..., T, which leads to a design with response probabilities 5 and
response propensities px. In general, py # px 4 but is a mix of the py 4(c) over groups and strategies,
unless one of the strategies is superior to all possible mixes. It can be shown that the optimized design
is at least as good as the best strategy.

Example: Suppose the interest is in general representativeness of the survey response. Five data
collection designs are considered for the Dutch Crime Victimisation survey (CVS): Web only, mail
only, face-to-face only, Web — face-to-face and mail — face-to-face. The last two designs are
sequential; face-to-face is only offered to nonrespondents in Web and mail, respectively. Ten auxiliary
variables are available: age, ethnicity, gender, individual annual income, province of residence,
registered phone number, subscription to an unemployment office, type of household, type of income,
and urbanization level. The variables are taken as they are defined and used by the social statistics
department for publication purposes. The size of the CVS sample is n = 8766. Table 1 shows the
coefficients of variation for the ten variables in the five designs. The coefficients are shown per
variable, averaged over the ten variables and for a model in which all variables are included. The ten
variables together show a preference for the sequential design mail — face-to-face, which slightly
outperforms the Web — face-to-face. The single mode design Web is by far the least favourite. If the
ten auxiliary variables are believed to be generated randomly, then mail — face-to-face is expected to
have the least bias on any other randomly drawn variable.

Table 1: Coefficients of variation (CV) for the ten auxiliary variables for five survey designs (Web
only, mail only, face-to-face only, Web — face-to-face and mail — face-to-face). The first but last
column gives the average value over the ten variables. The last column gives the value when all
variables are selected simultaneously.

Design 1 2 3 4 5 6 7 8 9 10 Av Al

W 021 014 007 028 007 007 001 018 015 0.05 0.12 0.36
M 018 016 005 014 006 006 004 019 005 004 010 0.29
F 009 013 000 000 014 005 001 011 0.04 013 0.07 0.23

w—F 006 008 001 008 010 0.08 001 011 006 0.10 0.07 0.18
M—F 008 009 002 009 005 003 004 010 005 004 0.06 0.16

3.2 — Detection of nonresponse bias on a variable of interest

Very often surveys have a restricted set of topics and a small set of variables of interest. In these
settings, it is more useful to consider specific bias rather than general bias. Consider one variable of
interest, say Y. Schouten, Cobben, Lundquist and Wagner (2014) show that the maximal absolute
remaining bias after adjustment using the expansion, generalized regression, inverse propensity
weighting or doubly robust estimators is proportional to

J(CVZ(p) — ECVZ(px))ER?(Y,X), (11)

where ER2(Y, X) is the expected proportion of unexplained variance.

Theorem 2 can now be used. As clustered, uniform grouping distributions conform to random draws
of variables from a subset of variables, this theorem is very helpful in translating response propensity



variation on X to Y in two different ways: It can be used to set up acceptance-rejection schemes for
auxiliary variables and it can be used to evaluate a targeted selection of variables.

Theorem 2 allows for acceptance-rejection schemes on generated variables in (Xq, X5, ..., Xp)T to
create random subsets of variables with useful features. Suppose variable X, is accepted for the
derivation of response propensities whenever the proportion of unexplained variance is lower than a
specified threshold 6, e.g. R?(Y, X,,,) < 6. If the proportion is larger, then the variable is discarded. It
is straightforward to show that the resulting subseries of auxiliary variables, X, is generated from a
clustered, uniform grouping distribution. The series may be empty, in which case no statements can be
made. However, if the series X exists, then it represents a random draw from the subset of variables to
which also the variable of interest belongs. A smaller CV(pg) for one design than another design
implies that in expectation the CV for any arbitrary other variable from the same subset is also smaller.
Still this result does not mean that the bias for the variable of interest is really smaller, but evidence is
growing as from (23) there is less room for the remaining bias to move around.

Theorem 2 can also be used to consider settings where the auxiliary variables are explicitly designed
to relate to the variables of interest or to the missing-data-mechanism itself. These settings may occur
when auxiliary variables are taken from so-called paradata measurements (e.g. Kreuter 2013), i.e.
observations and recordings made during survey data collection. If auxiliary variables are generated
from a clustered grouping distribution that also has the variables of interest in its support, then the
between variance in (5) approximates that of the clustered grouping distribution corresponding to the
variables of interest. If the auxiliary variables are generated from a clustered grouping distribution that
has the response probability p in its support, then the between variance in (5) approximates the overall
variance of response probabilities.

Table 3: Coefficients of variation (CV) per design for the four auxiliary variables that relate to the
variable of interest. The second to seventh column give average and combined values for auxiliary
variables that have €, > 0.10 and the last three columns give values for auxiliary variables that have
Cy > 0.15. For Y, no auxiliary variables satisfy these criteria.

C, > 0.10 C, > 0.15
_ Y, Y, Ys Y, Y, Ys
Design Ay Al Av Al Av__ Al Gender  NA Age
W 006 010 - - 015 029 007 - 0.21
M 005 008 - - 014 024 005 - 0.18
F 007 014 - - 011 019  0.00 - 0.09
W—F 006 010 - - 009 016 001 - 0.06
M—F 003 005 - - 007 013 002 - 0.08

Example —continued: The topics of the CVS consist of neighbourhood cohesion, neighbourhood
problems, safety on the streets and in general, victimisation, safety measures taken, contact with the
local police, performance of the police and performance of the municipality. Three variables of
interest are considered: a 0-1 indicator for feeling unsafe at times (Y;), a 0-1 indicator for being
satisfied with police performance (Y), and the number of victimisations in the past year (Y3).Two
thresholds are set to select variables based on Cramer’s V: C, > 0.10 and €, > 0.15. Under the first
threshold, respectively, two (gender and urbanization), zero and three variables (age, type of
household and urbanization) are selected for the three survey variables. Under the second threshold,
these numbers are one (gender), zero and one (age). Hence, no statement is made about variable police
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performance (Y,). Table 3 shows the coefficients of variation under the two thresholds. Design
preferences do not change when selecting auxiliary variables for target variable past victimisation (Y3).
For target variable feeling unsafe (Y;) the picture is somewhat unclear. When variables are selected
based on the criterion C, > 0.10, then the sequential design mail — face-to-face still scores best, but
the other designs have shifted roles and the single mode design face-to-face is now least favourite.
However, when C, > 0.15, then face-to-face is favourite, although the difference with the two
sequential designs is small.

4 - Discussion

This paper is based on the rationale that the nature of variables, that are used for inference under
nonresponse, is often discarded but is crucial in evaluating assumptions under which inference is valid.
Such variables may be assumed to be picked in some random fashion from the universe of potential
variables. Depending on the diversity of the population, the size of this “universe” is larger or smaller.
Little diversity implies that the set of potential variables is small and independent draws of variables
show more association. The straightforward approach is to enumerate and label all possible variables
and to draw variables at random. This approach is, however, not useful as it does not model
collinearity, which is the driving force in associations between variables. For this reason an approach
was taken were the population is made of a countable number of strata that are randomly grouped to
form variables. A countable population diversity seems natural from the point of view of relevance
and time-stability.

Two classes of variable generating distributions are considered: uniform grouping and clustered
grouping. These two classes seem sufficiently wide to model a wide range of settings. The first,
uniform grouping, amounts to a fully random selection of variables and leads to powerful conclusions
about associations. When auxiliary variables are indeed selected at random, then they detect traces of
missing data bias and associations and allow for conclusions beyond the mere associations they
themselves show. The second, clustered grouping, corresponds to a random selection from subsets of
the universe of variables. Clustering essentially bounds the potential to extrapolate observed
associations and limits conclusions.

Given that one accepts the framework, there are still a number of challenges. First, the number of
auxiliary variables must be large in order to draw conclusions. Essentially, the variables are just draws
and, as usual, quite a few are needed to get a precise picture of the parameters of interest, i.e.
population diversity and specific diversity of variables of interest. For numbers of auxiliary variables
that are common in practice, precision may often remain too low. Second, it is assumed that variables
are measured without error and are intrinsic to the population units. If an instrument shows faulty
measurements or if a person provides answers with some measurement error, then the variables get
obscured by the noise that is added. As a result, the diversity of the population is judged to be much
higher than it really is, as all associations become attenuated. Third, and most importantly, it is hard to
believe that variables are generated by random grouping. It seems more reasonable that variables are
generated from subsets of possible variables, i.e. by clustered random grouping. Consequently,
conclusions apply to subsets as well and may underestimate the full diversity. It is imaginable that the
auxiliary variables that are used most frequently have actually proved themselves in time to be
relevant in a broad sense. Probably the archetype variables are gender and age. These challenges may
be picked up in future research.



