
1

2013 International Workshop for Household Survey Nonresponse, London, UK 
 
Mini paper for Does balancing survey response reduce nonresponse bias? 
Barry Schouten1, Fannie Cobben2, Peter Lundquist3 and James Wagner4

Recently, various indicators have been proposed as indirect measures of nonresponse error in surveys. 
The indicators employ available auxiliary variables in order to detect nonrepresentative or unbalanced 
response. They can be used as quality objective functions in the design of survey data collection. Such 
designs are called adaptive survey designs, as different subgroups receive different treatments. The 
natural question is whether the potential decrease in nonresponse bias caused by adaptive survey 
designs could also be achieved by nonresponse adjustment methods that employ the same auxiliary 
variables. In this paper, we discuss this important question.  
There is no easy way to answer the main question of the paper, as in most cases nonresponse biases on 
survey target variables are unknown. We circumvent this complication by dividing available auxiliary 
variables into two sets: a set to be used in the assessment and improvement of indicators of 
nonrepresentative response and a set to be used in the evaluation of remaining nonresponse bias. We 
do this in two ways. First, we apply indicators to growing sets of auxiliary variables and investigate 
whether patterns are consistent, i.e. whether worse indicator values on small models go together with 
worse values on large models. Second, we perform nonresponse adjustment using growing sets of 
weighting variables and search for consistency in the remaining biases, i.e. whether larger biases on 
small models coincide with larger biases on large models.  
It is important to stress that the research question is to a large extent empirical. One can easily 
construct examples where balancing response does not reduce nonresponse bias. If we do find 
evidence in survey data that balancing helps, it, therefore, does not imply that the indicators have the 
feature that they detect nonresponse bias on other variables. It merely means that lower quality survey 
data collection, in the majority of cases, tends to affect the full range of potential variables and that the 
indicators successfully signal this tendency. Nonetheless, we do provide theoretical considerations that 
support balancing response through a combination of survey design and estimation.  
The strength of the empirical evidence depends on the variety of surveys that are studied and the 
nature of the auxiliary variables that are input to the indicators. We have selected a wide range of 
survey data sets from three different countries to find empirical support. We compare the 
representativeness of response for growing sets of auxiliary variables over different surveys, over 
different waves of a survey, during data collection and after different survey process steps like 
establishing contact and obtaining cooperation. In each comparison the auxiliary variables are fixed, 
but variables are different over different comparisons and different data sets. The data sets that we 
have selected contain a relatively rich set of auxiliary variables that were linked from registry data. 
Our study is somewhat similar to that of Peytcheva and Groves (2009), who investigated whether 
biases on auxiliary variables covary with biases on survey target variables. They found little evidence 
for such an association. Our study, however, shows that there is consistency in biases for auxiliary 
variables, even after adjustment. We do not extrapolate to survey target variables, but do discuss how 
such a consistency may extend to these variables as well. 
Even if our results provide a rationale that adaptive and responsive survey designs are meaningful 
extensions of traditional survey sampling designs, implementation of such designs in survey practice is 
not straightforward or easy. It implies a different framework and mindset. We leave it to other papers 
to recommend on such implementation. 
 
2. Indicators for representative or balanced response 

We review indicators that have recently been proposed in the survey methodology literature as 
measures of nonresponse error. We refer to Särndal and Lundström (2008 and 2010), Särndal (2011), 
Schouten, Cobben and Bethlehem (2009), Schouten, Shlomo and Skinner (2011) and Shlomo, Skinner 
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and Schouten (2012) for detailed accounts of the indicators and their statistical properties. We also 
refer to Wagner (2012) for a comparison and taxonomy of indicators. 

The representativeness indicator or R-indicator for a variable Z is defined as the transformed standard 
deviation of the response propensity function Zρ
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Schouten, Cobben and Bethlehem (2009) introduce this indicator in a design-based context and 
propose an estimator using logistic regression. The estimator itself is usually referred to as the R-
indicator. If one would use linear regression instead of logistic regression, then the R-indicator is equal 
to the balance indicator 2BI , proposed by Särndal and Lundström (2010). In practice, the choice of 
link function is, however, rarely influential. The rationale behind the indicators is that an absence of 
variation implies that response is a random subsample of the full sample.  

Two indicators have a close similarity to the R-indicator and balance indicator. The first is the 
coefficient of variation of the response propensity function 
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The indicator (2) can be estimated similar to (1) by dividing over the observed response rate. If the 
identity link function is used then the estimator has a close similarity to the coefficient of variation of 
the nonresponse adjustment weights proposed by Särndal and Lundström (2008), which they denote as 

3H . Nonresponse adjustment weights can be viewed as smoothed inverse response propensities.  

The second indicator that links to the R-indicator and balance indicator is the standardized contrast 
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which is equal to the standardized difference in the expectations of Z for respondents and 
nonrespondents. Traditionally, the impact of nonresponse on the locations of distributions is 
decomposed as the product of the contrast and the nonresponse rate ρ−1 . This product equals the 
coefficient of variation (2). Also the contrast has a counterpart in the Särndal and Lundström paper 
(2010); it is denoted by NRRdist | .
Groves and Heeringa (2006), Wagner (2008), Särndal (2011) and Schouten, Calinescu and Luiten 
(2013) propose to differentiate efforts in surveys for different population subgroups in order to 
maximally reduce bias of estimators based on the survey response within the available survey budget. 
These designs are termed adaptive or responsive survey designs and resemble adaptive treatment 
regimes in other areas of statistics. The rationale is that different population subgroups may prefer or 
react differently to different treatments. The indicators in this section are proposed by some of the 
authors as quality objective functions in these optimal quality-cost trade-offs. They are applied to a 
number of candidate designs and the design that has the best indicator value is favoured. Adaptation to 
the sampled units can be done prior to data collection based on previous waves of the same survey or 
similar surveys, or during data collection based on observations made on the sampled units. Schouten, 
Shlomo and Skinner (2011) propose partial R-indicators to identify population subgroups that should 
be targeted in order to reduce variation in response propensities. Essentially, the variance of response 
propensities is decomposed into between and within components and the subgroups that have the 
largest within variances are discarded. The authors define unconditional partial R-indicators, denoted 
by )|( XZPU , and conditional partial R-indicators, denoted by )|( XZPC , where Z is an element of 
the auxiliary vector X . )|( XZPU is defined as the between variance for Z of the response propensity 
function Xρ . )|( XZPC as the within variance attributable to Z given a stratification on X without 
Z , again of Xρ . For exact definitions, we refer to Schouten, Shlomo and Skinner (2011). Lundquist 
and Särndal (2013) define partial imbalance indicators in a comparable fashion. 
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Can these indicators usefully be applied to improve survey design? We first note that the scaling of the 
indicators by the response rate in (2) and (3) and the nonresponse rate in (3) implies that the indicators 
generally lead to different design preferences. Only if the response rate is equal for these different 
designs, it is true that the choice of indicator is irrelevant. Hence, although they may be interesting in 
their own right, they cannot be used simultaneously in design decisions. More importantly, however, 
the indicators are critized for two main deficits. Recently, Beaumont and Haziza (2011) rightfully 
remarked that the early adaptive and responsive survey design papers restrict attention to bias and 
ignore variance. Also, in this paper we will focus mostly on bias, because we want to address the other 
alleged deficit. Although the indicators have subtle differences, they share one important feature: They 
can be estimated only for auxiliary variables X and not for the variables of interest Y , unless a model 
is formulated. This feature is the second deficit; balancing response on X may not be meaningful or 
useful because the missingness on these variables can be accounted for through an adjustment 
procedure and the real variables of interest remain unaffected. This discussion links strongly to the 
paper by Andridge and Little (2011) in which missingness is modelled as a function of YXY λ+)( ,
where )(XY is the projection of Y on X and λ is a moderating parameter. λ cannot be estimated but 
allows for a sensitivity analysis. Andridge and Little (2011) do this by computing the fraction of 
missing information (FMI) for different choices of λ . In adaptive and responsive survey designs the 
FMI cannot be used in a straightforward way however, as different designs will lead to different λ ’s 
and FMI intervals on λ may be broad and overlap. 
 
3. Components of nonresponse bias 
 
In this section, we provide theoretical considerations that support a focus on improving indicator 
values by design. We formalize the utility of the indicators as process quality indicators. More 
specifically, we formalize the intuition that a larger variation of response propensities for X
corresponds to a larger variation of the true individual response probabilities. Doing so, we capitalize 
on the existence of an individual response probability. 

We view auxiliary variables themselves as being sampled from the population of all possible random 
variables. Suppose a large population consists of G fully homogeneous and equally sized groups, 
labelled by Gg ,,2,1 K= . All units in group g behave exactly the same in every way, and they have 
the same response probability for any given survey design. The stratification into the groups itself is 
not observed, but we do observe categorical variables kX , Kk ,,2,1 K= , that cluster groups into 
smaller numbers of groups.  

Let us for simplicity look at an 0-1 indicator variable X . Assume that X was constructed by a simple 
random sample without replacement of size XG from the set of G groups. Let gs be the 0-1 indicator 
that group g was selected. We then have the following definition of X
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i.e. X is one for all selected groups g and zero otherwise. Since the groups have equal size, the 
probability that 1=X is equal to GGX / .

Now, let gρ be the response probability of group g , so that the response propensity function )(xXρ

for X is defined as 
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In order to investigate the relation between the indicators based on X and those based on the full 
stratification with the G groups, we consider the expected mean and the expected variance of the 
response propensity function Xρ . The mean response propensity can be derived as 
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From (6) we can conclude that the mean response propensity Xρ is always equal to the mean 
individual response probability ρ . Clearly, the expected mean response propensity is then also equal 
to ρ . Hence, regardless of the choice of X , the mean response propensity is the mean of the 
individual probabilities. The variance of Xρ , )(2

XS ρ , is equal to 
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The expectation of )(xXρ is always equal to ρ , and, hence, (7) can be rewritten to 
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where ))(( xVar Xρ is the variance of Xρ with respect to the sampling design. Since X is constructed 
using a simple random sample without replacement, ))(( xVar Xρ is equal to 
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Combining (8) and (9) gives 
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so that the expected variance is equal to the variance of the individual response probabilities times the 
population diversity constant G/1 .

With similar arguments, it can be reasoned that if X is a categorical variable with C categories, then  

 )(1)( 22 ρρ S
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So for all X , the variance of the response propensity function Xρ is proportional to the variance of 
the underlying variance of individual response probabilities. This is a useful finding as it implies that, 
if for some survey design the R-indicator is smaller or the coefficient of variation is larger than for 
another survey design, then also the variance of the individual response probabilities is larger. As a 
consequence, the expected variance of the propensity function resulting from any random draw of 
subgroups g would be larger for that design too. Although it would not be true that the variance of all 
propensity functions is larger, there may in fact be various variables that lead to a smaller variance, it 
must hold that for an arbitrary variable the variance is larger. This conclusion supports the intuition 
that for surveys with many target variables, one would prefer larger R-indicators or smaller 
coefficients of variation. It also shows that for single topic surveys, it may actually be the survey target 
variable itself that is one of the exceptional variables. 

When it comes to the bias of the standard estimators (response mean inverse propensity weighting, 
GREG and double robust estimators) it can be shown that 
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which is the omnipresent term in the bias intervals of all estimators. 

If we could assume that the set of auxiliary variables kX , Kk ,,2,1 K= , consists of independent 
random draws of subgroups, then we could estimate G and )(2 ρS . The parameter G may be 
estimated from the maximal covariance found among the kX or using the first eigenvalue in a factor 
model. The variance )(2 ρS can be estimated by the average of the propensity function variances. Of 
course, the discussion in this section is conceptual, auxiliary variables cannot be considered as 
independent, random draws of population subgroups. However, models for nonresponse are often 
being critized for the lack of relevant, explanatory variables; standard variables like age or gender may 
have proved to be indicative of homogeneity in the population, they were certainly not picked to 
model response. 
 
4. Testing the reduction of nonresponse bias 
 
Even when some theoretical considerations, as laid out in the previous section, would advise to aim at 
improving indicator values through design, it would make a much stronger case if empirical results 
support such an endeavour. For this reason, we explored a wide range of survey data. We evaluated 
the validity of the preferences of the indicators using a multiple sample location rank test. In the test, 
we randomly divided the set of auxiliary variables into two groups: an evaluation set and a validation 
set. We tested the null hypothesis that indicator values and nonresponse biases for evaluation sets are 
not indicative of indicator values and nonresponse biases for validation sets. 
 
For each indicator we rank the designs within a comparative data set based on growing models of 
auxiliary variables. We start by ranking the designs on 1X , then add 2X , and continue to add 
variables until the whole vector T

Mvvvv v
XXXX ),,,( ,2,1, K= is included. Hence, the included auxiliary 

variables function as the evaluation set and the omitted auxiliary variables as the validation set. The 
evaluation set grows with each step, while the validation set shrinks. If we assume that indicators 
computed on evaluation sets are not predictive of indicators based on validation sets, then it holds that 
the different rankings are independent. The total number of pair wise inversions needed to go from the 
first ranking to the last ranking is the sum of independent numbers or pair wise inversions. A small 
total number of pair wise inversions implies clustered preferences, i.e. the indicator shows a consistent 
picture when different variables are considered. The multiple sample location rank test is based on the 
numbers of pairwise inversions. It is possible to test per comparative data set and to test all 
comparative data sets simultaneously, i.e. summing the individual test statistics over all data sets.  

There are two basic assumptions underlying to the rank test: 1) the ranks do not produce any ties, and 
2) auxiliary variables are independent. The rank test assumes that the indicators and biases have a 
continuous measurement level and do not produce ties. The indicators and biases are continuous but 
they are random variables and are subject to imprecision. As a result, two indicator values and two 
biases may not be statistically different at a certain significance level. Given a significance level, the 
indicators and biases do produce ties. It is, however, not straightforward how to account for the 
standard errors of the indicators and biases in the rank test without making assumptions on the 
probability distributions of the indicators and biases over variables. We, therefore, accepted that the 
tests will be conservative and we selected survey data sets that have modest to large sample sizes. The 
second assumption is more fundamental as it links to the independence assumption in the rank test. It 
is not true that the auxiliary variables are independent, and any dependence between the auxiliary 
variables may lead to spurious consistency in the rankings of indicator values. For this reason we also 
ranked designs within data sets based on conditional partial R-indicators (see Schouten, Shlomo and 
Skinner 2011) and on remaining nonresponse bias after adjustment for the GREG estimator, adding 
variables to the adjustment one by one.  
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5. Application to survey data sets 
 
Our empirical illustration is based on a wide variety of survey data sets from three countries. The p-
values are estimated for 14 datasets in two ways: 1) using quantiles based on independence as in 
section 4.2, and 2) using quantiles of simulated empirical probability distributions. The adjusted p-
values based on the simulated distributions must, however, be interpreted with care as these are based 
on relatively simple models for the generation of auxiliary variables. 
Table 5.1 contains the p-values. As expected, the unadjusted p-values are small for the R-indicator, 
coefficient of variation and the contrast. The adjusted (simulated) p-values are much larger and rarely 
have values smaller than usual significance levels. The unadjusted and adjusted p-values for the partial 
R-indicator and nonresponse biases are in most datasets similar in size, indicating that for these 
indicators p-values are robust for collinearity in the selected auxiliary variables. For the partial R-
indicator five out of the 14 datasets have an unadjusted p-value smaller than 0.05 and of these five 
values four are smaller than 0.01. For the nonresponse bias three values are smaller than 0.05 and 
these are also smaller than 0.01.  
 
Table 5.1: Observed numbers of inversions, expected numbers of inversions and p-values for various 
comparative datasets. R is the R-indicator, CV the coefficient of variation, C the contrast, Pc the 
conditional partial R-indicator and B the remaining bias of the GREG estimator. 
Dataset p-value based on independence 

 
p-value based on simulation 

 
R CV C Pc B R CV C Pc B 

HS 0.03 0.00 0.03 0.32 0.18 0.65 0.42 0.75 0.48 0.17 
CVS 0.50 0.03 0.50 0.97 0.12 0.93 0.41 0.92 0.96 0.12 
HS – CVS 0.14 0.00 0.20 0.96 0.00 0.98 0.70 1.00 1.00 0.00 
LFS 0.00 0.01 0.03 0.82 0.82 0.22 0.62 0.77 0.88 0.78 
SCS 0.00 0.00 0.00 0.00 0.00 0.17 0.02 0.04 0.07 0.01 
SCSASD 0.06 0.06 0.06 0.06 0.06 0.27 0.27 0.27 0.07 0.02 
LISS 0.00 0.00 0.00 0.03 0.00 0.00 0.07 0.12 0.27 0.00 
STS-IND 0.01 0.01 0.01 0.72 0.72 0.09 0.12 0.11 0.74 0.65 
STS-RET 0.01 0.03 0.03 0.50 0.88 0.09 0.41 0.39 0.53 0.82 
LCS 0.00 0.00 0.00 0.00 0.07 0.18 0.00 0.56 0.01 0.08 
PPS 0.00 0.00 0.00 0.00 0.10 0.06 0.00 0.70 0.00 0.13 
SCA 0.08 0.01 0.08 0.81 0.35 1.00 1.00 0.98 0.92 0.31 
NSFG 0.01 0.01 0.01 0.01 0.77 0.24 0.29 0.29 0.04 0.68 
HRS 0.04 0.04 0.04 0.36 0.36 0.50 0.56 0.52 0.46 0.27 

Table 5.2 contains the observed numbers of inversions and corresponding p-values for the partial R-
indicator and nonresponse bias when multiple datasets are combined into one overall test. Three 
combinations of datasets are combined: all nine datasets from Statistics Netherlands, all five datasets 
from Stat Sweden and ISR Michigan, and all 14 datasets. In all cases the p-values are smaller than 
0.05, and with one exception they are much smaller. The overall test, thus, indicates that the total 
observed numbers of inversions are much smaller than expected when design preferences per variable 
would be random.  
 
Table 5.2: Expected numbers of inversions, observed numbers of inversions and p-values for 
combined datasets from Statistics Netherlands, from Stat Sweden and ISR Michigan and from all 
institutes. Pc is the conditional partial R-indicator and B the remaining bias of the GREG estimator. 

Number of inversions p-value 
Expected Pc B Pc B 

Stat Netherlands 189.5 142 97 <0.001 <0.001 
Stat Sweden/ISR 118.5 66 97 <0.001 0.02 
All 308 208 194 <0.001 <0.001 
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While individual datasets do not point strongly at consistency in design preferences, their combination 
does indicate that nonresponse affects multiple variables simultaneously, even when adjusting for 
multicollinearity. This conclusion must be viewed with some care as it is still based on 14 datasets 
with a specific selection of auxiliary variables. Nonetheless, given the wide range of surveys these 
results do provide incentive to balance response on auxiliary variables by design regardless of any 
adjustment afterwards. 
 
Points for discussion 

• Can available auxiliary variables in nonresponse analyses be treated as random selections of 
the universe of variables on a target population? 

• Do the results of the study provide empirical support for adaptive and responsive survey 
designs? 

• Would others be interested in joining in in the evaluation, i.e. to apply the rank test to their 
survey data sets? 


