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Recently, various indicators have been proposed as indirect measures of nonresponse error in surveys.
The indicators employ available auxiliary variables in order to detect nonrepresentative or unbalanced
response. They can be used as quality objective functions in the design of survey data collection. Such
designs are called adaptive survey designs, as different subgroups receive different treatments. The
natural question is whether the potential decrease in nonresponse bias caused by adaptive survey
designs could also be achieved by nonresponse adjustment methods that employ the same auxiliary
variables. In this paper, we discuss this important question.

There is no easy way to answer the main question of the paper, as in most cases nonresponse biases on
survey target variables are unknown. We circumvent this complication by dividing available auxiliary
variables into two sets: a set to be used in the assessment and improvement of indicators of
nonrepresentative response and a set to be used in the evaluation of remaining nonresponse bias. We
do this in two ways. First, we apply indicators to growing sets of auxiliary variables and investigate
whether patterns are consistent, i.e. whether worse indicator values on small models go together with
worse values on large models. Second, we perform nonresponse adjustment using growing sets of
weighting variables and search for consistency in the remaining biases, i.e. whether larger biases on
small models coincide with larger biases on large models.

It is important to stress that the research question is to a large extent empirical. One can easily
construct examples where balancing response does not reduce nonresponse bias. If we do find
evidence in survey data that balancing helps, it, therefore, does not imply that the indicators have the
feature that they detect nonresponse bias on other variables. It merely means that lower quality survey
data collection, in the majority of cases, tends to affect the full range of potential variables and that the
indicators successfully signal this tendency. Nonetheless, we do provide theoretical considerations that
support balancing response through a combination of survey design and estimation.

The strength of the empirical evidence depends on the variety of surveys that are studied and the
nature of the auxiliary variables that are input to the indicators. We have selected a wide range of
survey data sets from three different countries to find empirical support. We compare the
representativeness of response for growing sets of auxiliary variables over different surveys, over
different waves of a survey, during data collection and after different survey process steps like
establishing contact and obtaining cooperation. In each comparison the auxiliary variables are fixed,
but variables are different over different comparisons and different data sets. The data sets that we
have selected contain a relatively rich set of auxiliary variables that were linked from registry data.
Our study is somewhat similar to that of Peytcheva and Groves (2009), who investigated whether
biases on auxiliary variables covary with biases on survey target variables. They found little evidence
for such an association. Our study, however, shows that there is consistency in biases for auxiliary
variables, even after adjustment. We do not extrapolate to survey target variables, but do discuss how
such a consistency may extend to these variables as well.

Even if our results provide a rationale that adaptive and responsive survey designs are meaningful
extensions of traditional survey sampling designs, implementation of such designs in survey practice is
not straightforward or easy. It implies a different framework and mindset. We leave it to other papers
to recommend on such implementation.

2. Indicators for representative or balanced response

We review indicators that have recently been proposed in the survey methodology literature as
measures of nonresponse error. We refer to Sérndal and Lundstrém (2008 and 2010), Sérndal (2011),
Schouten, Cobben and Bethlehem (2009), Schouten, Shlomo and Skinner (2011) and Shlomo, Skinner
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and Schouten (2012) for detailed accounts of the indicators and their statistical properties. We also
refer to Wagner (2012) for a comparison and taxonomy of indicators.

The representativeness indicator or R-indicator for a variable Z is defined as the transformed standard
deviation of the response propensity function p,

R(Z)=1-28(p,). (1)

Schouten, Cobben and Bethlehem (2009) introduce this indicator in a design-based context and
propose an estimator using logistic regression. The estimator itself is usually referred to as the R-
indicator. If one would use linear regression instead of logistic regression, then the R-indicator is equal
to the balance indicator BI,, proposed by Sérndal and Lundstrém (2010). In practice, the choice of

link function is, however, rarely influential. The rationale behind the indicators is that an absence of
variation implies that response is a random subsample of the full sample.

Two indicators have a close similarity to the R-indicator and balance indicator. The first is the
coefficient of variation of the response propensity function
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The indicator (2) can be estimated similar to (1) by dividing over the observed response rate. If the
identity link function is used then the estimator has a close similarity to the coefficient of variation of
the nonresponse adjustment weights proposed by Sérndal and Lundstrom (2008), which they denote as
H, . Nonresponse adjustment weights can be viewed as smoothed inverse response propensities.

The second indicator that links to the R-indicator and balance indicator is the standardized contrast

S(pz(2))
pl-p)
which is equal to the standardized difference in the expectations of Z for respondents and

nonrespondents. Traditionally, the impact of nonresponse on the locations of distributions is
decomposed as the product of the contrast and the nonresponse rate 1- p. This product equals the
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coefficient of variation (2). Also the contrast has a counterpart in the Sérndal and Lundstrom paper
(2010); it is denoted by dist gy -

Groves and Heeringa (2006), Wagner (2008), Sarndal (2011) and Schouten, Calinescu and Luiten
(2013) propose to differentiate efforts in surveys for different population subgroups in order to
maximally reduce bias of estimators based on the survey response within the available survey budget.
These designs are termed adaptive or responsive survey designs and resemble adaptive treatment
regimes in other areas of statistics. The rationale is that different population subgroups may prefer or
react differently to different treatments. The indicators in this section are proposed by some of the
authors as quality objective functions in these optimal quality-cost trade-offs. They are applied to a
number of candidate designs and the design that has the best indicator value is favoured. Adaptation to
the sampled units can be done prior to data collection based on previous waves of the same survey or
similar surveys, or during data collection based on observations made on the sampled units. Schouten,
Shlomo and Skinner (2011) propose partial R-indicators to identify population subgroups that should
be targeted in order to reduce variation in response propensities. Essentially, the variance of response
propensities is decomposed into between and within components and the subgroups that have the
largest within variances are discarded. The authors define unconditional partial R-indicators, denoted
by P,(Z]X), and conditional partial R-indicators, denoted by P.(Z|X), where Z is an element of

the auxiliary vector X . P, (Z|X) is defined as the between variance for Z of the response propensity
function p,. P-.(Z|X) as the within variance attributable to Z given a stratification on X without
Z , again of p, . For exact definitions, we refer to Schouten, Shlomo and Skinner (2011). Lundquist
and Sérndal (2013) define partial imbalance indicators in a comparable fashion.



Can these indicators usefully be applied to improve survey design? We first note that the scaling of the
indicators by the response rate in (2) and (3) and the nonresponse rate in (3) implies that the indicators
generally lead to different design preferences. Only if the response rate is equal for these different
designs, it is true that the choice of indicator is irrelevant. Hence, although they may be interesting in
their own right, they cannot be used simultaneously in design decisions. More importantly, however,
the indicators are critized for two main deficits. Recently, Beaumont and Haziza (2011) rightfully
remarked that the early adaptive and responsive survey design papers restrict attention to bias and
ignore variance. Also, in this paper we will focus mostly on bias, because we want to address the other
alleged deficit. Although the indicators have subtle differences, they share one important feature: They
can be estimated only for auxiliary variables X and not for the variables of interest Y, unless a model
is formulated. This feature is the second deficit; balancing response on X may not be meaningful or
useful because the missingness on these variables can be accounted for through an adjustment
procedure and the real variables of interest remain unaffected. This discussion links strongly to the
paper by Andridge and Little (2011) in which missingness is modelled as a function of Y(X)+AY,

where Y(X) is the projection of ¥ on X and A is a moderating parameter. A cannot be estimated but

allows for a sensitivity analysis. Andridge and Little (2011) do this by computing the fraction of
missing information (FMI) for different choices of 4. In adaptive and responsive survey designs the
FMI cannot be used in a straightforward way however, as different designs will lead to different A ’s
and FMI intervals on 4 may be broad and overlap.

3. Components of nonresponse bias

In this section, we provide theoretical considerations that support a focus on improving indicator
values by design. We formalize the utility of the indicators as process quality indicators. More
specifically, we formalize the intuition that a larger variation of response propensities for X
corresponds to a larger variation of the true individual response probabilities. Doing so, we capitalize
on the existence of an individual response probability.

We view auxiliary variables themselves as being sampled from the population of all possible random
variables. Suppose a large population consists of G fully homogeneous and equally sized groups,
labelled by g =1,2,...,G. All units in group g behave exactly the same in every way, and they have

the same response probability for any given survey design. The stratification into the groups itself is
not observed, but we do observe categorical variables X,, k=12,...,K, that cluster groups into

smaller numbers of groups.

Let us for simplicity look at an 0-1 indicator variable X . Assume that X was constructed by a simple
random sample without replacement of size G from the set of G groups. Let s, be the 0-1 indicator

that group g was selected. We then have the following definition of X

1 Vg,s, =1
x={ J8% )
0 vg,s,=0

i.e. X is one for all selected groups g and zero otherwise. Since the groups have equal size, the
probability that X =1 isequalto G /G .
Now, let p, be the response probability of group g, so that the response propensity function p (x)

for X is defined as
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In order to investigate the relation between the indicators based on X and those based on the full
stratification with the G groups, we consider the expected mean and the expected variance of the
response propensity function p, . The mean response propensity can be derived as
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From (6) we can conclude that the mean response propensity p, is always equal to the mean
individual response probability p . Clearly, the expected mean response propensity is then also equal
to p. Hence, regardless of the choice of X, the mean response propensity is the mean of the

individual probabilities. The variance of p,, S*(py ), is equal to
2 Gy —\2 Gy —\2
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The expectation of p, (x) is always equal to p, and, hence, (7) can be rewritten to
2 Gy Gy
S7(px) :?VW(PX 1) +(1—?)Var(px 0)), (3

where Var(p (x)) is the variance of p, with respect to the sampling design. Since X is constructed
using a simple random sample without replacement, Var(py (x)) is equal to
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Combining (8) and (9) gives
S p)= =520, (10)

so that the expected variance is equal to the variance of the individual response probabilities times the
population diversity constant 1/G .

With similar arguments, it can be reasoned that if X is a categorical variable with C categories, then
Cc-1
S%m)szz(p). (11)

So for all X, the variance of the response propensity function p, is proportional to the variance of

the underlying variance of individual response probabilities. This is a useful finding as it implies that,
if for some survey design the R-indicator is smaller or the coefficient of variation is larger than for
another survey design, then also the variance of the individual response probabilities is larger. As a
consequence, the expected variance of the propensity function resulting from any random draw of
subgroups g would be larger for that design too. Although it would not be true that the variance of all

propensity functions is larger, there may in fact be various variables that lead to a smaller variance, it
must hold that for an arbitrary variable the variance is larger. This conclusion supports the intuition
that for surveys with many target variables, one would prefer larger R-indicators or smaller
coefficients of variation. It also shows that for single topic surveys, it may actually be the survey target
variable itself that is one of the exceptional variables.

When it comes to the bias of the standard estimators (response mean inverse propensity weighting,
GREG and double robust estimators) it can be shown that
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which is the omnipresent term in the bias intervals of all estimators.

If we could assume that the set of auxiliary variables X,, k=12,...,K, consists of independent

random draws of subgroups, then we could estimate G and S?(p). The parameter G may be
estimated from the maximal covariance found among the X, or using the first eigenvalue in a factor

model. The variance S?(p) can be estimated by the average of the propensity function variances. Of

course, the discussion in this section is conceptual, auxiliary variables cannot be considered as
independent, random draws of population subgroups. However, models for nonresponse are often
being critized for the lack of relevant, explanatory variables; standard variables like age or gender may
have proved to be indicative of homogeneity in the population, they were certainly not picked to
model response.

4. Testing the reduction of nonresponse bias

Even when some theoretical considerations, as laid out in the previous section, would advise to aim at
improving indicator values through design, it would make a much stronger case if empirical results
support such an endeavour. For this reason, we explored a wide range of survey data. We evaluated
the validity of the preferences of the indicators using a multiple sample location rank test. In the test,
we randomly divided the set of auxiliary variables into two groups: an evaluation set and a validation
set. We tested the null hypothesis that indicator values and nonresponse biases for evaluation sets are
not indicative of indicator values and nonresponse biases for validation sets.

For each indicator we rank the designs within a comparative data set based on growing models of
auxiliary variables. We start by ranking the designs on X, then add X,, and continue to add

variables until the whole vector X, =(X,;, X, ,,...., X, ) )" is included. Hence, the included auxiliary
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variables function as the evaluation set and the omitted auxiliary variables as the validation set. The
evaluation set grows with each step, while the validation set shrinks. If we assume that indicators
computed on evaluation sets are not predictive of indicators based on validation sets, then it holds that
the different rankings are independent. The total number of pair wise inversions needed to go from the
first ranking to the last ranking is the sum of independent numbers or pair wise inversions. A small
total number of pair wise inversions implies clustered preferences, i.e. the indicator shows a consistent
picture when different variables are considered. The multiple sample location rank test is based on the
numbers of pairwise inversions. It is possible to test per comparative data set and to test all
comparative data sets simultaneously, i.e. summing the individual test statistics over all data sets.

There are two basic assumptions underlying to the rank test: 1) the ranks do not produce any ties, and
2) auxiliary variables are independent. The rank test assumes that the indicators and biases have a
continuous measurement level and do not produce ties. The indicators and biases are continuous but
they are random variables and are subject to imprecision. As a result, two indicator values and two
biases may not be statistically different at a certain significance level. Given a significance level, the
indicators and biases do produce ties. It is, however, not straightforward how to account for the
standard errors of the indicators and biases in the rank test without making assumptions on the
probability distributions of the indicators and biases over variables. We, therefore, accepted that the
tests will be conservative and we selected survey data sets that have modest to large sample sizes. The
second assumption is more fundamental as it links to the independence assumption in the rank test. It
is not true that the auxiliary variables are independent, and any dependence between the auxiliary
variables may lead to spurious consistency in the rankings of indicator values. For this reason we also
ranked designs within data sets based on conditional partial R-indicators (see Schouten, Shlomo and
Skinner 2011) and on remaining nonresponse bias after adjustment for the GREG estimator, adding
variables to the adjustment one by one.



5. Application to survey data sets

Our empirical illustration is based on a wide variety of survey data sets from three countries. The p-
values are estimated for 14 datasets in two ways: 1) using quantiles based on independence as in
section 4.2, and 2) using quantiles of simulated empirical probability distributions. The adjusted p-
values based on the simulated distributions must, however, be interpreted with care as these are based
on relatively simple models for the generation of auxiliary variables.

Table 5.1 contains the p-values. As expected, the unadjusted p-values are small for the R-indicator,
coefficient of variation and the contrast. The adjusted (simulated) p-values are much larger and rarely
have values smaller than usual significance levels. The unadjusted and adjusted p-values for the partial
R-indicator and nonresponse biases are in most datasets similar in size, indicating that for these
indicators p-values are robust for collinearity in the selected auxiliary variables. For the partial R-
indicator five out of the 14 datasets have an unadjusted p-value smaller than 0.05 and of these five
values four are smaller than 0.01. For the nonresponse bias three values are smaller than 0.05 and
these are also smaller than 0.01.

Table 5.1: Observed numbers of inversions, expected numbers of inversions and p-values for various
comparative datasets. R is the R-indicator, CV the coefficient of variation, C the contrast, Pc the
conditional partial R-indicator and B the remaining bias of the GREG estimator.

Dataset p-value based on independence p-value based on simulation

R cr C Pc B R cr C Pc B

HS 0.03 0.00 0.03 032 0.18 0.65 042 0.75 048 0.17
CVS 0.50 0.03 050 097 0.12 093 041 092 096 0.12
HS-CVS 0.14 0.00 020 096 0.00 098 0.70 1.00 1.00 0.00
LFS 0.00 0.01 0.03 082 082 022 062 077 0.88 0.78
SCS 0.00 0.00 0.00 0.00 0.00 0.17 0.02 0.04 0.07 0.01
SCSASD  0.06 0.06 0.06 0.06 0.06 027 027 027 0.07 0.02
LISS 0.00 0.00 0.00 0.03 0.00 0.00 0.07 0.12 0.27 0.00

STS-IND  0.01 0.01 0.01 072 0.72 0.09 0.12 0.11 0.74 0.65
STS-RET 0.01 0.03 0.03 050 0.88 0.09 041 039 053 0.82

LCS 0.00 0.00 0.00 0.00 0.07 0.18 0.00 0.56 0.01 0.08
PPS 0.00 0.00 0.00 0.00 0.10 0.06 0.00 0.70 0.00 0.13
SCA 0.08 0.01 0.08 0.81 035 1.00 1.00 098 0.92 0.31
NSFG 0.01 0.01 0.01 0.01 077 024 029 029 0.04 0.68
HRS 0.04 004 004 036 036 050 056 052 046 0.27

Table 5.2 contains the observed numbers of inversions and corresponding p-values for the partial R-
indicator and nonresponse bias when multiple datasets are combined into one overall test. Three
combinations of datasets are combined: all nine datasets from Statistics Netherlands, all five datasets
from Stat Sweden and ISR Michigan, and all 14 datasets. In all cases the p-values are smaller than
0.05, and with one exception they are much smaller. The overall test, thus, indicates that the total
observed numbers of inversions are much smaller than expected when design preferences per variable
would be random.

Table 5.2: Expected numbers of inversions, observed numbers of inversions and p-values for
combined datasets from Statistics Netherlands, from Stat Sweden and ISR Michigan and from all
institutes. Pc is the conditional partial R-indicator and B the remaining bias of the GREG estimator.

Number of inversions p-value
Expected Pc B Pc B
Stat Netherlands 189.5 142 97 <0.001 <0.001
Stat Sweden/ISR 118.5 66 97 <0.001 0.02
All 308 208 194 <0.001 <0.001




While individual datasets do not point strongly at consistency in design preferences, their combination
does indicate that nonresponse affects multiple variables simultaneously, even when adjusting for
multicollinearity. This conclusion must be viewed with some care as it is still based on 14 datasets
with a specific selection of auxiliary variables. Nonetheless, given the wide range of surveys these
results do provide incentive to balance response on auxiliary variables by design regardless of any
adjustment afterwards.

Points for discussion
* Can available auxiliary variables in nonresponse analyses be treated as random selections of
the universe of variables on a target population?
* Do the results of the study provide empirical support for adaptive and responsive survey
designs?
*  Would others be interested in joining in in the evaluation, i.e. to apply the rank test to their
survey data sets?



