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1 Introduction

Panel surveys are plagued by nonresponse at their initial wave, which may be substantial, and
also by panel attrition, which is typically smaller but cumulating over time. Besides the loss
in terms of case numbers or statistical power, this cumulation is often thought to aggravate
initial selective e�ects. Such a view of a permanent or even worsening nonresponse bias
results from a static view on the variables of interest. If, for example, nonresponse depends
on gender, which changes only very seldom, an initial nonresponse bias with respect to
gender will never vanish in later panel waves; unless of course, attrition is such that it
exactly counteracts the selective e�ects present at the start of the panel. The same view
may also hold for variables which change only slowly over time like the highest level of
attained education. In these cases calibration methods may help to adjust for nonresponse
bias, see S�arndal (2007) for a general overview and Rendtel/Harms (2008) for calibration in
panel surveys.

However, most panel surveys are launched to observe and analyse the change of variables.
Characteristics that are linked to income and poverty, for instance, are much less stable over
time and there is a considerable exchange between e.g. the states \poor" and \non-poor", see
Rendtel (2013) based on EU-SILC data. So even if there is a substantial over-representation
of poor people in the �rst wave of the panel, it will happen that \poor" become \non-poor"
and vice versa. This general turn-over has the potential to let the initial nonresponse bias
present at the start of the panel \fade away" over time.

In order to check for such a behaviour empirically, it is necessary to have information
about the variables of interest for both respondents and nonrespondents, which are typically
not at hand. If, however, a panel survey is sampled from a register, then it is possible to use
linked register information. Here, Sisto (2003) and Rendtel (2013) report a rapid decline
of initial nonresponse bias between income quintiles (Finnish subsample of the ECHP) and
poverty states (Finnish subsample of EU-SILC) in later panel waves. Rendtel (2013) coined
the phenomenon as the \fade-away e�ect" of initial nonresponse.

A Markov chain approach is used here to derive a general contraction theorem in the
case of non-homogeneous transitions. In the case of time-homogeneous transitions we can
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use the convergence to a steady state distribution to assess the strength of the fade-away
e�ect. This theoretical framework is applied for the German Panel on "Labour Market and
Social Security" (PASS= Panel Arbeitsmarkt und soziale Sicherung), which is a panel that
is linked to the registers of the German Social Security �les.

2 The Methodological Framework of Markov Chains

We assume that the characteristic of interest fYtgt2N follows a Markov chain with state
space S = f1; : : : ; Ig:

P (Yt = jjYt�1 = i; Yt�2 = st�2; : : : ; Y1 = s1) = P (Yt = jjYt�1 = i)

= pi;j(t)

Denote the transition law for transitions to wave t by P (t) = (pi;j(t))(i;j=1;:::;I). The transi-
tion law from wave t�1 to wave t may be time-inhomogeneous or time-homogeneous. In the
time-homogeneous case the transition law is denoted by P = (pi;j)(i;j=1;:::;I). Transitions

from wave 1 to wave t0 are denoted by P (t0). One obtains P (t0) = P (2)P (3) : : : P (t0). In
the case of time-homogeneous chains we have P (t0) = P t0�1.

2.1 A Contraction Theorem in the Case of Time-Inhomogeneous

Markov Chains

Our application of Markov chain theory uses two di�erent starting distributions. Let �I(1)
be the starting distribution on the state space for the gross-sample of the panel at wave one.
We refer to this sample as the FULL-sample. There will be a second Markov chain with
a di�erent starting distribution �II(1), which refers to the net-sample of the panel at wave
one. We refer to this sample as the RESP sample.

One essential of our approach is that the transition law for respondents and non-respondents
is identical. We refer to this assumption as Assumption A. One motivation for this as-
sumption is that the socio-economic laws that drive individual changes over time are not
a�ected by the interviewee's decision to participate in a survey or not. However, one could
imagine that the decision on further participation in a panel rests on future views about
labour market development. Assumption A cannot be veri�ed from the respondent data
alone. Therefore it is a typical Missing at Random assumption (MAR) in the sense of Rubin
(1976). However, if the panel sample is recruited from a register and if there is access to
key variables from the register then it is possible to test Assumption A.

The distribution of the two Markov chains at wave t is computed in a sequential fashion
by �0I(t) = �0I(t� 1)P (t) and �0II(t) = �0II(t� 1)P (t). If all entries of �II(t) are positive we
may compute:

mt = min
i

�I;i(t)

�II;i(t)
�

�I;i(t)

�II;i(t)
� max

i

�I;i(t)

�II;i(t)
=Mt (1)

The following contraction theorem states that the two distributions �I(t) and �II(t)
converge under some regularity conditions as long as the two chains underlay the same
transitions laws P (t):

Theorem 2.1. Suppose that the positive entries of the P (t) are uniformly bounded away

from 0, i.e. there exists a pl > 0 with:

0 < pl � pi;j(t) � 1 for all positive elements of P (t) (2)
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Suppose further that there exists a t0 such that:

P (2) : : : P (t0) > 0 (3)

Then �I(t) and �II(t) converge uniformly in the sense of

lim
t!1

(Mt �mt) = 0 (4)

A proof of this theorem is given in the appendix of the full-length paper. Note that the
regularity conditions of equations 2 and 3 are not serious restrictions for empirical work.

The important consequence of this theorem is that a potential nonresponse bias in the
�rst panel wave measured as a di�erence of the FULL-sample and the RESP -sample tends
to disappear in later panel waves.

2.2 Regularity Conditions for the Attrition Process

So far we have �xed a framework under which the distributions �FULL and �RESP converge
in later panel waves. However, �RESP is further a�ected by panel attrition. Denote the
sample of observed units at wave t by OBSt.

We have to make a statement about the attrition process. Intuitively it is clear that
panel attrition may counteract the convergence with respect to the Markov chain. Thus
panel attrition must not be selective with respect to the variable of interest. This issue is
treated more formally for the case of a panel with four waves. From this case the results
may be easily extrapolated to longer panels. We use the response indicators R1; R2; R3; R4,
where Rt = 1 indicates response and Rt = 0 indicates nonresponse at wave t. Furthermore
we use the Yt which indicate the state at wave t with t = 1; : : : ; 4. The distribution in the
OBSt-sample at wave 4 is P (Y4 = j4jR1 = 1; R2 = 1; R3 = 1; R4 = 1).
Now we have:

P (Y4 = j4jR1 = 1; R2 = 1; R3 = 1; R4 = 1)

=
X

j3

P (Y4 = j4jY3 = j3; R1 = 1; R2 = 1; R3 = 1; R4 = 1)

� P (Y3 = j3jR1 = 1; R2 = 1; R3 = 1; R4 = 1) (5)

=
X

j3

P (Y4 = j4jY3 = j3; R1 = 1; R2 = 1; R3 = 1; R4 = 1)

�
P (R4 = 1jY3 = j3; R1 = 1; R2 = 1; R3 = 1)

P (R4 = 1jR1 = 1; R2 = 1; R3 = 1)

� P (Y3 = j3jR1 = 1; R2 = 1; R3 = 1) (6)

In order to proceed we need Assumption A that the transition behavior must not depend
on the participation behavior:

P (Y4 = j4jY3 = j3; R1 = 1; R2 = 1; R3 = 1; R4 = 1) = P (Y4 = ijY3 = j3) (7)

Furthermore we need Assumption B stating that the previous state does not have a direct
e�ect on the participation in the present wave:

P (R4 = j4jY3 = j3; R1 = 1; R2 = 1; R3 = 1) = P (R4 = 1jR1 = 1; R2 = 1; R3 = 1) (8)
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By using assumptions A and B one gets:

P (Y4 = j4jR1 = 1; R2 = 1; R3 = 1; R4 = 1)

=
X

j3

P (Y4 = ijY3 = j3)P (Y3 = j3jR1 = 1; R2 = 1; R3 = 1) (9)

Using the same kind of analysis for P (Y3 = j3jR1 = 1; R2 = 1; R3 = 1) and inserting into
eq. 9 one obtains:

P (Y4 = j4jR1 = 1; R2 = 1; R3 = 1; R4 = 1) (10)

=
X

j3;j2

P (Y4 = ijY3 = j3)P (Y3 = j3jY2 = j2)P (Y2 = j2jR1 = 1; R2 = 1)

Finally we arrive at:

P (Y4 = j4jR1 = 1; R2 = 1; R3 = 1; R4 = 1)

=
X

j3;j2;j1

P (Y4 = ijY3 = j3)P (Y3 = j3jY2 = j2)P (Y2 = j2jY1 = j1)

� P (Y1 = j1jR1 = 1) (11)

where the last term P (Y1 = j1jR1 = 1) is the starting distribution for the respondents of
wave 1 and the summation is done over 3 cycles of the Markov chain on the state space.
According to our contraction theorem the right side of equation 11 converges uniformly to
the distribution of the Markov chain which started from the FULL-sample.

Assumption B and the corresponding expressions for wave 3 and 2 may be regarded as
restrictive, as it states that attrition must not be linked to the state of the previous period.
It should be noted, however, that assumption B can be directly veri�ed from the observed
data of the panel. Rendtel (2015) simulated di�erent attrition scenarios with Finnish SILC
data and reported that di�erences up to 10 percentage points in nonresponse propensity do
not a�ect the fade-away e�ect substantially.

2.3 The \Strength" of the Fade-Away E�ect.

The contraction theorem makes no statement about the speed of convergence or the strength
of the fade-away e�ect. However, to be of practical importance it is essential to know whether
one has to wait 2 or 3, or 20 panel waves, for a substantial fade-away of an initial nonresponse
bias. Generally speaking, the more turn-over there is in the state space, the faster will be
the convergence.

In the case of a time-homogeneous Markov chain the famous Perron-Frobenius Theorem
allows us to make a statement about the convergence rate. A transition matrix P is called
ergodic if there exists a t0 2 N such that all pi;j(t0) > 0 for all i; j = 1; : : : ; I. Note
that Equation 3 in the contraction theorem exactly refers to ergodicity. Also the second
precondition of the theorem in equation 2 hold trivially for a time-homogeneous Markov
chain. Thus the contraction theorem does hold for any ergodic Markov chain. However, we
get even more:

Theorem 2.2. Let fYtgt2N an ergodic Markov chain with state space S and IxI transition

matrix P. If all eigenvalues � of an ergodic matrix P are disjoint and ordered such that

j�1j > : : : > j�N j then it holds:
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There exists a steady state distribution:

�� = (��1 ; : : : ; �
�

I )
0 with (��)0P = (��)0 (12)

and the convergence to the steady state distribution follows a geometrical pattern:

jp
(t)
ij � ��j j = O(j�2j

t) for all i; j 2 S; t 2 N (13)

For a proof, see Seneta (1980).
In the application part we will meet a situation where the distribution of the gross-sample

�FULL = (�FULL1 ; : : : ; �FULLI )0 and the net-sample of wave 1 �RESP = (�RESP1 ; : : : ; �RESPI )0

will be far away from the steady state distribution. Yet the di�erences Dj(t) between the
two distributions converge to 0 in a geometric fashion. This is due to the above theorem
and the triangle inequality (proof in full-length version of the paper). Thus, even if we are
far away from the steady state distribution, the contraction property of the Markov chain
works with the same rate of convergence.

3 Data Base and Empirical Findings

As mentioned in the introduction, the data used for the empirical examples are from the
PASS panel study, which is one of the most comprehensive annual household surveys in Ger-
many in the �eld of labor market, welfare state and poverty research. PASS is speci�cally
designed to assess the dynamics of a new means-tested welfare bene�t scheme, called Unem-
ployment Bene�t II (henceforth: UBII), and introduced in 2005 as part of major reform of
the German welfare system. We shall focus on the wave 1 \recipient subsample" which is a
random sample of bene�t units drawn directly from the registry of welfare recipients housed
at the Federal Employment Agency (FEA). For both responding and nonresponding cases
of this subsample we have available linked register data on UBII receipt covering waves 1-5.

Based on this, the presentation at the NR-Workshop will display some empirical �ndings
on the extent of initial nonresponse bias in UBII receipt and its' fade-away over time and
present tests of assumption A and B.
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