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Abstract: In this paper we apply a Bayesian framework for modelling the survey design parameters within the
context of adaptive survey design to the Dutch Health Survey (DHS) data. The Bayesian framework is quite
generic, however also new and complex. This framework has an advantage of making possible to incorporate
prior knowledge or historical estimates into these models. In order to capture response or target variable trends
we look at the DHS data of two years (2014 and 2015) with the fixed time window of three months and update
the prior information by moving forward this window. We include the auxiliary and paradata and target variables
of the DHS data in this framework. Our main goal is to define an optimal strategy allocation, in terms of quality
and cost indicators, such as budget, response rate or measurement errors. For different strategies we derive
overall quality and cost indicators using models defined through a Bayesian framework. This is a step forward to
monitoring and adapting strategies during survey data collection based on prior knowledge.

1. Introduction

While response rates have been dropping gradually for last decades, it becomes urgent to move away from the
traditional ways of data collection. Monitoring data and adapting survey strategies during data collection is a
way to deal with the problem. This implies a strongly increasing interest in methodology for survey data
collection monitoring, analysis, and intervention or adaptation; More specifically, into the direction of adaptive
or responsive survey designs that adapt or tailor strategies and effort to known and relevant characteristics of
sampled units from the target population, see Groves and Heeringa (2006), Wagner (2008) and Schouten,
Calinescu and Luiten (2013). In order to adapt, accurate estimates of survey design parameters are not just
needed at the overall population level, but also at the deeper level of population subgroups.

A natural approach to deduce inaccuracy of survey design parameters and to make analyses and design
optimization more robust is to incorporate historic survey data and expert judgment through a Bayesian analysis.
In this paper we apply a general model for survey design parameters and target variables. To these survey design
parameters are then assigned prior distributions, which are updated and transformed to posterior distributions
during data collection. We propose to use Gibbs samplers to obtain draws from the posterior distributions of
response propensities, cost functions and target variables. We calculate quality and cost indicators and method
effect based on these basic survey design parameters.

We carried out a simulation experiment on the Dutch Health Survey (DHS) data of two years (2014 and 2015).
We want to including historic data through Bayesian analysis when deriving quality indicators and observe the
trend in quality indicators in this period of time. We use the first three and six months of data as our historic data
to define priors. For detecting a trend we update out prior by moving forward with the fixed time window of
three months. We include the auxiliary variables (age, gender and income) and target variables (BMI and smoke)
of the DHS data in this framework.

The paper is organised as follows: in the next section we introduce our notations and define the model. In
Section 3 we describe Bayesian framework and introduce the quality indicators. In Section 4 we describe data
and the simulation experiment and conclude with Discussion.



2. The model

First we introduce some notations. Let the survey design consist of a maximum of T phases that are labelled by
t =1,2,...,T. Define S; as the collection of all possible actions in phase t and let s; represent the action in phase
t. For different phases, the collections of actions may be different. The action sets may contain sg, which, if
selected, implies that no attempt is made to obtain a response. We define the collection of survey strategies

51"[‘: = {(51, ""ST):SC € St,t = 1,2, ...,T}

and let s; r € §; r denote one possible strategy, i.e. sequence of actions. For a strategy s; r, we denote the actions
in phase i til j by the vector s; ;. For example if in phase 1 we carry out online data collection we will have that
81 = {CAWI}. If we would take two different actions for different groups of respondents, for example call one
group and send a web questionnaire to the other we would have §; = {CAWI, CATI}. In adaptive surveys, part of

the design features may be implemented differently for different sample units, i.e. there is a set of strategies, see
Groves and Heeringa (2006), Wagner (2008), Coffey, Reist and White (2013).

For a subject i, we let x; be the vector of auxiliary variables that is linked from frame data, administrative data or
paradata, x; consists of the following entries

p— !
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where xq; = (Xq,1,i, -+ Xom,,)’ contains the auxiliary variables available at the start of data collection, and
Xei = (X100 0 Xe;my,i)" are the auxiliary variables that are observed for the fielded sample units in phase t. In
the optimization of the adaptive survey designs (ASD), actions in phase t can only be chosen based on x,; to

Xt—1,i-

The design of each survey has a range of features, e.g. advance letter, contact protocol, screener interview,
number of phases, reminder protocol, use of incentive, mode of administration (web, telephone, face-to-face,
mail), interviewer, refusal conversion procedure and type of questionnaire. The total of choices made for the
design features (e.g. incentive, phases, first web mail then telephone interview) will define the data collection
strategy or simply strategy.

On the other hand ASD either maximize a quality objective subject to cost constraints and other quality
constraints or minimize a cost objective subject to quality constraints. The quality and cost constraints depend on
the setting in which the survey is conducted. Three sets of survey design parameters suffice to compute most of
the quality and cost constraints:

1. Response propensities per unit p;(s; r) per strategy;
2. Expected costs per sample unit C;(s; ) per strategy;
3. Adjusted mode effects per unit D; (SLT) per strategy;

We first introduce basic models for response propensities and costs. Therefore, we break down these parameters
into their basic components, like the contact and participation propensities. For these basic components we will,
first, make some general assumptions. We assume that making contact, obtaining participation and the costs
associated with an individual sample unit are independent of contact, participation and the costs of any other
individual sample unit.

Here we define our model only for contact propensity, a part of response propensity. Models for the response
propensity and cost functions can be defines similarly.
First introduce more notations:
— Let k. ;(s;) be the propensity of a contact in phase t under strategy s; . given that the unit did not
respond in earlier phases and is eligible for follow-up. We assume that design features in subsequent
phases have no impact on making contact. The outcome(s) of the previous phase(s) can be included in



the auxiliary vector, when contact propensities are considered to be dependent on whether there was a
noncontact or a refusal.
—  A¢i(s1¢) is the propensity of a participation in phase t of subject i under strategy s, . given contact (and
given that the unit did not respond in earlier phases and is eligible for follow-up).
—  The response propensity in phase t of a subject i under strategy s; ;, py;(S1,¢), is:
pt,i(sl,t) = Kt,i(51,t) Aei(S1,6)-
When in subsequent phases all nonresponse receives a follow-up, then

Pi (SI,T) = K1,i(51) 11,1'(51) + ZZ:Z ((Hf;%(l - Kl,i(sl,l) /11,1'(51,1)))’%,1'(51;) Aei (Sl,t))'

We model the propensities using a probit model, i.e. using a binomial link function. Each sample unit has a

certain contactability represented as a latent variable Z, (e )(sl ) and contact is obtained when this latent variable

is larger than zero and Z( )(s1 t) N(M(K) (S1,e)s O'(K) (s1 t)) for some y(K) (S1,e)s a (s1 ¢) so that

K“(Slt) P(Z(K)(s1 t) > 0)

Define Bt(x)to be the regression coefficients in phase t given that s; , is applied to a unit / and X, a matrix of
auxiliary variables in phase ¢. The model could be written as

Z(K) (Sl t) X ﬂ(K) (K)

tl.’

()

where £, ;" ~N (0,1) is an error term for the uncertainty of contact of the subject.

This model has quite a few parameters. We want to simplify the model. To be able to include dynamic adaptive
survey designs, we need to include paradata. However to keep the model simple, we assume that there is just one
phase, say t;, in which paradata is collected. Up to phase t; only the auxiliary variables in x,; can be used to
model the propensities. After phase t,, the auxiliary variables obtained in phase t; can also be included in the
model. Second, we consider the dependence on past actions. It is unrealistic to assume there is no such
dependence in most settings. Past actions could be included by introducing a fixed or random effect per possible
history. We add the history as a random effect here. Third, since we suggest to add a dependence on the history
of actions as a random effect, the regression coefficients become necessarily dependent on the phase and not on
the past. The model becomes

79 )= B. 0) ()%, + E(K) + 55”(51;—1)’ t<ty, |
tL St (;c) () (K) 5 M
(St)xm + .Bt (St)xtll. t+é&,; + 0, (Sl,t—l)’ >ty
where St(K) (Slrt_l) is a random effect.
For participation propensity 4, ; (s, ) we will have the same model:
yl yl
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Next we define models for the costs. In general, the costs per sample depend on the phase, the sample unit and
the strategy. For notational convenience here we drop the subscript t for phase. We define:

- G (e )(51 t) as the cost to make a contact attempt (visit or call) with a sample unit ; in phase ¢, following
strategy Syt € 81 ¢;

- G @ )(51 t) as the cost for the response, of a sample unit i in phase . These are defined in a similar way

as the contact cost.



For some actions, these functions may be identical to zero, e.g. a response cost to a web survey. The cost

parameters Ci('c)(sl,t) can be written using these components and the contact and participation propensities
yl
Ci(K)(Sl,t) = Cé,’? (51,6) + 10 (SI)C1(§) (51,6) + re1,i(s1) * A1,(s1) Cf,i)(sl,t) +

t=2 1=1 \ 1 = K,i(S1,0 )AL\ 1,0 KeilS1)C0p 7 \S1,t) TKei\S1,6)Aei\S1e) G i \S1e) ) )
+ Xt (T2 (1 = (500 20i(s10) (s0CE (S1,0)+rei(s1.0)Aei(s10) €7 (51,0)

In this paper, we make the simplification that cost functions do not depend on the phase and history of actions
but only on the current action and hence cost functions do not depend on the phase and design features in
previous phases, but only on the current phase and design features. We can make this simplification since we can
assume that these dependences are negligible. For example we assume that breaking off in CAWI and the
traveling costs of an interviewer in CAPI are independent. Costs are continuous variables and we use linear
models for the costs functions

c(s16) = 1)+ ¢06), P (s1,0) =vP)x +{P(s), seS (3)

where yi(K)(s) and yi(’l) (s) are regression parameters allowing for interaction between the current action s and

the auxiliary vector x; and {, L-(K)(s) and i(’l) (s) are error terms that again allow for an interaction with the current
action. The error terms are modelled as independent normal

7 (s)~N (0. U(ZK)(S)) and ¢V (s)~N (0’ U(Z’U(S))'

Suppose we have K target variables. Denote by Y ;(s1r) the outcome of the survey target variable Y}, (k =

1, ..., K) for population unit i when strategy s, r is applied. We assume that the outcome of the survey variable
depends only on the current action and not on the history of actions and not on the phase, i.e. a form of
measurement equivalence, so that Yt,k,i(sl’t) =Y i(S).

for all possible histories and all phases. Now, it holds that

1 -
Yii(sir) = P (p1,i ()Y (1) + TToo TIZE (A — pri(S1,0)Pei (51,0 Yiei (Sp)),

1,T)

and, hence, the outcome for the strategy is modelled as a weighted mix of the outcomes under the possible
actions.

The outcomes for the actions are modelled as
Yiei(se) = 0o(sp)xo; + 01(se)x; + &y i(Se), “4)

for continuous variables, where the error terms are modelled as independent normal
ey,i(se)~N (0, a(Zy)(S)) , and as

Viei(se) = 0(s)xo; + 01(s)x1; + €vi(Sp), ©)

for dichotomous variables, where ¥ ;(s,) is a latent variable and Y, ;(s;) = 1 when ¥ ;(s;) = 0, and ¥ ;(s,) =
0 otherwise and ey ;(s;)~N(0,1). As usual, the regression parameters get assigned prior distributions. The type
of distribution depends on the measurement level, but we follow the approach for response propensities and cost
functions; we employ normal priors for regression slope parameters and inverse Gamma priors for dispersion
parameters.

The observed data are extended by the matrix of survey variables over all sample units where entry yy ; is
missing when unit i did not respond.



3. Bayesian analysis

The analysis become Bayesian by assigning prior distributions to the regression coefficients and random effects
in (1) — (5). Our aim is to derive the posterior distributions of the individual response propensities p; (SLT), the
individual cost parameters C; (sLT) and the target variables Y ; (SLT) per strategy given observed data. These
overall parameters are, in general, complex functions of the underlying survey design parameters per phase. We
derived expressions for the posterior distributions of the regression coefficients and random effects when it was
possible, otherwise derived these numerical approximations and applied Markov Chain Monte Carlo methods to
generate draws from the posterior distributions.

Below we use p(syr) and C(s;r) for the vector of response propensities and cost parameters over all sample
units for a particular strategy. In the same fashion, we use u,, y, ¢, ¢™® and x to denote the vectors of
outcomes, realized costs components and auxiliary variables over sample units. Note that x may in fact be a

matrix, when the auxiliary variables are a vector by themselves. With {SiT} we denote the vector of used

strategies for all sample units. To shorten expressions, we use B, BP, 500, §@ 1 @ 52 g for the vectors
of regression slope parameters, random effects and regression dispersion parameters over phases and actions, but
elaborate when needed. Here p stands to express joint and marginal density functions; we omit the reference to
the random variables to which they apply and ignore differences between discrete and continuous probability
distributions. Finally, in the density functions, we omit the dependence on the hyperparameters. A
straightforward solution is to perform a Gibbs sampler to the joint density of the regression parameters

ﬁ('c)’ﬂ(l)’ 5(;<)’ 5(/1)’],(@’],(/1)’ 02,0:

p(ﬁ(’c)’ 'B(A)’ 6(K)' 6(1)' y(K)' y(l)' 02' 9 ut' C(K)' C(A)' X, y' {Sli,T})'

A Gibbs sampler for this density function requires repeated draws from the conditional densities of each
regression parameter given the observed data and the other regression parameters, the so-called full conditionals.
Literature provides a range of options to sample from these conditional distributions, see Albert and Chib (1993)
and Gelman et al (2003).

The Gibbs sampler has the following steps:

1. Setthe random effects for the contact and participation equations to zero, 65'0 = (0 and 65’1) =0, fit
regression models to all contact, participation, cost and target variable equations and use the resulting
estimated parameter values as starting values for the regression parameters
ﬁ(K)’B(A)’ 5§09, 5D 4 D 52 g

2. For each unit (i) in each phase (t), sample the latent variables Z t('f) and Z E’P from p(Z t('f) | ,B’(K), Ui, X, {SiT})

Dot i

and P(Zt(,i)|ﬁ( ),ut,i,xi,{sir});

For each phase, sample the contact slope parameters 5 @ from p(ﬁ (K)th(f), X, {SiT});

Sample the random effects St('c)from p(6t('€) |Zt("§), ,B(K), X, {S{"T});

For each phase, sample the participation slope parameters ﬁ(l) from p(ﬁ @ |Z t("}), X, {S{',T});

Sample the random effects 65’1) from p(6t('1) |Zt("}), ,B(A), X, {sli,T});

For the cost components, sample the variance parameters o2 from p(a?|y, c®,c®, x, {sli’T});
For the cost components sample the slope parameters ¥ from p(y|c2, ¢, ¢, x, {sli,T});

o I

For the categorical target variables, for each unit (i) in each phase (t), sample the latent variables 17” from
P(?t,i |9' Yt,i'xi'{sli,T}); ) .

10. For each phase, sample the slope parameters 6 from p(01Y; ;, x;, {s11});

11. For the continuous target variables, sample the variance parameters a(zy) from p(a(zy) |6, Yoo % {s0]);

12. For the continuous target variables, sample the slope parameters 8 from p(@la(zy), Yo X Ue s X, {sli’T});

13.Return to step 2 for another round of defining posteriors based on a new prior ;



In order to carry out the data augmentation, we did not make use of standard libraries in R but programmed the
Gibbs sampler from scratch.

In the monitoring and optimization of data collection, the focus is on functions of the design parameters that
correspond to overall quality or cost objectives. We consider three such functions here for the sake of brevity,
the response rate, the total costs and the coefficient of variation of the response propensities; the analysis of other
functions can often be done in an analogous way.

Let d; represent the design or inclusion weight for sample unit i, i = 1,2, ...,n. The response rate, RR, for
strategy s; r can be written as

1
RR(s1r) = I i=1dipi (S17)s (6)
the total costs, or required budget, B, associated with sT are
B(syr) = Xiz1 ¢ (S1r)s (7

and the coefficient of variation, CV, is

di(pi(s1,7)—RR(51,7))?

RR(s1,T)

B,
CV(X,sir) = (®)

For the CV, we explicitly denote the dependence on the covariate vector X; for any other choice of auxiliary
variables it will, generally, attain a different value. The response rate and total costs do not depend on the choice
of X.

The another quality indicator, the adjusted absolute method effect is based on a benchmark strategy (BM). First
define the expected measurement difference between strategy s; r and the benchmark strategy:

Dyei(s1,r; BM) = Yiei(s1r) = Yiei(BM).
Then the adjusted absolute method effect is

Yie1 dipi(s1,7) D i(s1,r:BM) |
S dipi(sir) |

Dy (s BM) = | (9)

We will refer to (9) as simply the method effect of strategy s; 7.

There are two important difference in the estimation with response propensity and cost design parameters. First,
a sample unit may not respond and the outcome of survey variables may be unavailable. This means that the
outcome posterior distribution for a sample unit may be based on the outcomes of similar sample units that did
respond. Second, per sample unit at most one outcome will be observed. We assume that the sample is randomly
allocated to different designs, so that all outcomes can be estimated. This implies that at least one outcome in (9)
must be estimated from similar sample units.

Obviously, the prior and posterior distributions for these functions are determined by the prior and posterior
distributions of the components of the response propensities, cost functions and target variables. They have even
more complex forms than the individual response propensities, cost parameters and target variables. However,
they can again be approximated as a by-product of the Gibbs sampler. For every draw of the individual response
propensities and cost parameters, we compute (6) — (9).

4. Health Survey Data

In the simulation study, we investigate the impact of prior distribution specification and of survey sample size on
the posterior distributions and investigate how much we profit from historic knowledge. We also observe the



trend in quality indicators in this period of time. We include historic data as a prior information in our Bayesian
model. We carry out the simulation study on the Dutch Health Survey.

We have monthly data of DHS available to us from March 2014 till March 2016. There are large number of
background variables available, which we obtained before or after data collection from the administrative
sources and linked to the survey data. For all respondents and non-respondents we have these background
information. To keep the number of parameters in the Gibbs sampler confined, we include three covariates: Age,
Gender and Income:

— Gender: Male, Female;
- Age, 3 categories: [0, 30), [30, 60), [60, ...);
— Income, 6 categories:[0, 1000), [1000, 2000), [2000, 3000), [3000, 4000), [4000, 5000), [5000, ...).

After the first phase of data collection, paradata variable of web interview Brake-off is available. In this
experiment this variable is not included. We will extend our model with this paradata variable in the future
experiments.

We have two variables defining response; these are contact and participation. In phase 1 online data collection
was carried out, the invitation letter was sent to all participant’s addresses. Here participation is equal to 1 for
everyone and we only consider contact that is defined by the response. For phase 2 and 3 we have face to face
interviews and we define contact and participation. Phase 2 stops after 3 contact attempts. Phase 3 includes 4 and
more contacts.

For each phase we also calculated costs made for each participant. Based on the information obtained from the
data collection department we can calculate cost of a web participation and refusals. If the participant called to
refuse, then the telephone costs are included. For face to face interviews we calculated costs based on number of
visit, average travel distance of the interviewer, time duration of the interview, etc. As a result we can calculate
cost per respondent per phase and the aggregated costs per phase for contact and participation.

As we mentioned above we consider two ways to define priors for the Gibbs sampler. We can define priors
based on the expert opinion of subject matter specialists or use historic data. Here we first define priors using
historic data. We consider data of the first three and six months from March till May and from March till August
of 2014 and derive priors based on these data. To define fair priors we bootstrapped 1000 subsets of this prior —
data, each subset of size 3000. As we work by phase we divide these bootstrapped data sets by phase as well. So
for example, data for phase 2 will not include respondents of phase 1. In this way we consider only participants
for each phase. For each phase we then fit the probit and linear models as defined in (1)-(5). That way we
obtained 1000 estimates for regression coefficients for these models. Next we derive estimates of the
hyperparameters: mean, standard error and covariance for these coefficients. These hyperparameters are the
priors for the Gibbs sampler.

We consider three different size of data: a month, three months and one year. Using these priors and data we
then apply the Gibbs sampler and obtain posterior distribution for the parameters.

Next step is to move the time window of a three months forward by one month. We derive priors as above for
data of April — June 2014 and apply it using Gibbs sampler on a data of July 2014 to define the posterior
distributions. Based on these posterior distributions we calculate quality indicators defined in (6) to (9).

5. Discussion

We apply a Bayesian model for survey design parameters related to response and costs. This model is fit for
multiple data collection phases, different types of auxiliary data, multiple nonresponse outcomes and dependence
on previous actions. The Gibbs sampler provides estimates for the posterior distributions of the contact and
participation propensities and the costs per sample unit. From the runs of the Gibbs sampler, also the posterior
distributions for overarching quality indicators, like the response rate or coefficient of variation of the response
propensities, and cost indicators can easily be derived.



References

Albert, J.H., Chib, S. (1993), Bayesian analysis of binary and polychotomous response data, Journal of the
American Statistical Association, 88, 669 — 680.

Coffey, S., Reist, B., White, M. (2013). Monitoring Methods for Adaptive Design in the National Survey of
College Graduates, In JSM Proceedings, Survey Methods Research Section, Alexandria,
VA: American Statistical Association, 3085-3099.

Gelman, A. (2006), Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, 1 (3),
515 —-534.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis. London: Chapman and
Hall, second edition.

Groves, R.M., Heeringa, S.G. (2006). Responsive design for household surveys: tools for actively controlling
survey errors and costs, Journal of the Royal Statistical Society. Series A, 169, 439 — 457.

Kreuter, F. (2013), Improving Surveys with Paradata. Analytic Uses of Process Informaton, Edited monograph,
John Wiley and Sons, Hoboken, New Jersey, USA.

Schouten, B., Calinescu, M., Luiten, A. (2013). Optimizing quality of response through adaptive survey designs.
Survey Methodology, 39 (1), 29 — 58.

Wagner, J. (2008). Adaptive survey design to reduce nonresponse bias, PhD thesis, University of Michigan,
USA.



