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1 Introduction

Longitudinal surveys are plagued by nonresponse not only at their start but
alzo in later phases of the study. For example, in panel surveys the nonre-
sponse at the initial wave may be aggravated by attrition in later panel waves.
The attrition can be caused, e.g., by non-cooperation or failure to follow up
residential movers (Watson and Wooden 2009). When such losses are doe-
umented in a cumulative fashion (as, e.g., for the German Socio Economic
Panel (SOEP) by Kroh (2011})), the impression one easily gets is that the
cumulative effect of nonresponse on case numbers is most likely accompanied
by increased bias, as well.

However, this need not always be the case. The hypothesis of a permanent
or aggravating nonresponse bias results from a static view of the variables
of interest. To be precize, if nonresponse depends on gender, a nonresponse
bias with respect to gender will not vanish in later panel waves. But, many
longitudinal surveys are launched to observe and analyse the change or the
stability of dynamic variables, such as income or poverty (cf., Atkinson and
Marlier (2010) for the European Union Statistics of Income and Living Con-
ditions (EU-SILC)). These characteristics are unstable over time, and there
can be considerable exchange between the states "poor” and "non-poor” see
for example Rendtel (2013). Therefore, even if there is a substantial over-
representation of poor people in the first wave of the panel, it will happen
that " poor” become "non-poor” and vice versa. This general turnover has
the potential to reduce the selective non-response effect observed at the start
of the panel. Rendtel (2013) coined the term "fade away effect” for this
phenomenon.

There are two essential assumptions of the Markov approach presented
here, (1) the state transitions of the respondents and the nonrespondents
between panel waves follow the same Markov process, and (2) an individual’s
probability of responding at later waves must not depend on the state one is
currently in.

In order to check for the wvalidity of such assumptions it is necessary to
have information about the variables of interest for both the respondents and
nonrespondents. The latter information is typically not at hand. However,
if participants for a panel survey are sampled from a register, then it may be
possible to use the register information on income and labour participation
from the register. For example, Sisto (2003) and Rendtel (2013) report a
rapid decline of a nonresponse bias on income quintiles {Finnish subsample
of the European Community Household Panel (ECHP) ) and poverty states
(Finnish subsample of EU-SILC ) in later panel waves.

We present a general contraction theorem that applies to non-homogeneous
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weakly ergodic Markov chains. Alternatively, the result applies also to de-
terministic matrix models of population evolution. This gives us two comp-
lementary ways to view the time evolution of the panel waves. In the case
of time-homogeneous transitions a steady state distribution exists in both
cases, and we can use the convergence to the steady state to assess the speed
of the fade away effect.

This theoretical framework is applied to the German Panel on Labour
Market and Social Security PASS (acronym for Panel Arbeitsmarkt und

soziale Sicherung), which is a panel that is linked to the registers of the
German Social Security files.

2 Markov chains and related matrix models

We consider the evolution of a population in discrete time, t =0,1,2,..., as
disaggregated into a finite number of states § = {1,....I'}. The members of
the population are assumed to move from state to state as a Markov process,

P(Y, = j[Yiy =i, Yio = sia,....Yo=s0) = P(Yi=jl¥i,=i)
= pi;lt)

The I x I matrix of transition probabilities from time ¢ — 1 to time ¢ is P(t) =
(p:;(t)). In the case of panel surveys this refers to state transitions from one
wave to the next. If the transition probabilities are time-homogeneous, we
write P(t) = P = (p;;), for all t. Transition probabilities from starting state
at ¢ = 0 to state at time ¢ are given by P = P{1)P(2)... P(t). In the case
of time-homogeneous chains we have P — P?,

2.1 A contraction theorem in the case of a time-inhomo-
reneons Markov chain

Our application of Markov chain theory uses two different starting distri-
butions. Let wp(0) be the starting distribution on the state space for the
gross-sample of the panel at first wave. We refer to this sample as the FULL-
sample. The second Markov chain with a different starting distribution wg(0)
applies to those who responded at the first wave. We refer to this sample as
the RES P-sample.

Our assumption A requires that the state transitions of all individuals
belonging to the two samples have the same transition matrix P, This
holds, as long as survey participation has no influence on subsequent state
transitions. A priori it seems plausible to assume that the chances on the
labour market are not affected by the participation in a survey. Also in
interviewer-based surveys it is often the field work setting that influences the
participation or nonparticipation. The literature on nonresponse has many
indications that paradata which describe field work are powerful indicators
for nonresponse (e.g., Watson and Wooden (2009)), and in many instances
these paradata are uncorrelated with the state variables of interest. Howewver,
there can be situations where a change on the state space interacts with field
situations. For example, a change from receiving unemployment benefits to
not receiving them may be connected with regional mobility, and the follow-
up of such movers may turn out to be a burden for the field-work.



Formally assumption A cannot be verified from the respondent data
alone, so it must be considered as a Missing at Random (MAR) assump-
tion in the sense of Rubin (1976). But, when the panel sample is recruited
from a register and if there is access to key variables for both respondents and
nonrespondents, then it may be possible to test assumption A directly for
variables that are recorded in the register. This approach will be presented
in the empirical part below.

Under assumption A the state distributions of the two Markov chains at
wave ¢ are computed in a sequential fashion from mg(t) = P'(t)7p(t — 1) and
wr(t) = Pt)wg(t — 1). When all entries of wg(t) are strictly positive, we
have the inequalities

— min mrilt) o mEalt) max wri(t) L
e ”R=iif}'£?TR,i(f}£ i wra(t) M, (1)

foralli=1,...,1.
The following contraction theorem states that, under realistic regularity
conditions, the two distributions wp(t) and wg(t) converge.

Theorem 2.1. Suppose that there is lower bound 0 < pp < pi;(t). Then
wp(t) and wp(t) converge uniformly in the sense that

Jim (M —mg) = 0. (2)

A proof of the result is given in the appendix.

Note, that the assumption of a lower bound would typically be satisfied
by social indicators of the type we are interested in. The same is true for the
implicit assumption that all states can be reached from all states, in one step.

We should mention that there is an alternative route to our contrac-
tion theorem which avoids the Markovian chain model for the individual
behaviour. This approach was developed in mathematical demography and
serves there as a realistic model to reality when population sizes are large (cf.,
Cohen 1979). Mathematically, our contraction theorem is actually a result
that holds for any sequence of non-negative matrices, say, A(f), and state
vectors X (¢) that evolve recursively as X(t) = A{#)X({¢t —1),t = 1,2,.. ..
This matrix model has the weak ergodic property, if, say, X(0) > 0 and
the elements a;;(t) of matrices A(f) are bounded from below and above,
0 < a < a;it) < A < +oo. This approach involves no assumption of individ-
ual level stochasticity like the Markov chain model does, and it can provide
an approximation to the process even in the presence of absorbing states, like
deaths. Note, that in the case of absorbing states, the Markovian approach
will not result in a contraction theorem.

Armed with this dual view of the weak egodicity result, we note that the
important consequence of this theorem is that a potential nonresponse bias
in the first panel wave measured as a difference of the state distributions of
the FULL-sample and the RESP-sample tends to disappear in later panel
waves or over time.



2.2 Regularity conditions for the attrition process

The FULL- and the RES P-samples remain unchanged in later panel waves.
What changes, however, are their state distributions wp(t) and wg(t). But
the HES P-sample is further reduced by panel attrition. The observed sample
at t will be denoted by OBS,. lts state distribution is wp(i).

Intuitively it is clear that panel attrition may counteract the convergence
with respect to the Markov chain. Thus panel attrition must not be selective
with respect to the variable of interest. In order to avoid lengthy notation on
individual probabilities we display here attrition as a simple matrix multi-
plication which connects the distributions mg(t) and mp(¢ — 1). Let us define
a diagonal matrix of response proportions R(f) = diag(R,(t)...., Ri(t)),
where 0 < R;(t) < 1 for ¢ = 1,..., I at {. Then, under assumption A
the state distribution of the observed sample satisfies the recursion mp(t) =

nR(t)P'(t)wolt — 1),t = 1,2, ..., where n; is a suitable normalisation con-
stant. Our assumption B states simply that response frequencies must be
equal, or Hy(t) = ... = H(t) for all . We see that under this assumption the

state distribution is unaffected by the attrition, although case counts may go
down. Assumption B may be regarded as restrictive, but in the end this is
an empirical matter that may be directly decided based on observable data.

There are arpuments supporting the hypothesis that survey participation
in later panel waves differs substantially from the participation behaviour at
the start of the panel. People who have agreed to participate in the first
panel wave have shown some interest in the goals of the survey. This shows
up in the overall nonresponse rates which usually dramatically decrease after
wave one. For example, Junes (2012) reports attrition rates of 8 % (wave 2),
7 % (wave 3) and 5 % (wave 4) which compare to 30 % in wave 1 in the case
of the Finnish subsample of EU-SILC. Also field-work related effects come
into play. For example, in a face-to-face mode the interviewees expect to see
the interviewer of the first round at their door. Behr et al. (2005) report that
a change of the interviewer is one of the most important causes of attrition
for national subsamples of the ECHP. Similar results are also reported in the
analysis of Watson and Wooden (2009). The change of the interviewer is
typically related to the recruitment policy of the field-institute and as such
independent of the variable of interest. Standard attrition analyses of panel
survevs use a lot of variables that potentially explain selective attrition (cf.,
Kroh (2011) for the SOEP). The attrition analysis of the Australian HILDA
panel contains 77 predictors, (cf., Watson and Wooden (2009)). However,
when "significant” variables are found, they are seldom stable for the expla-
nation of panel attrition in future waves (Behr et al. (2005)). Moreover, there
is a question of magnitude. Often the differences between nonresponse rates
are as small as 5 percentage points while the differences due to the Markovian
process can amount 50 percentage points or more. Rendtel (2015) simulated
different attrition scenarios with Finnish EU-SILC data and reported that
in this case differences in attrition propensity up to 10 percentage points do
not affect a fade away effect substantially.



2.3  The speed of the fade away effect

The contraction theorem only assures us that two populations with different
starting distributions will have similar state distributions eventually. The
proof indicates that the convergence is geometric. The rate of convergence
depends on the nature of bounds that hold for the elements of the transition
matrices. For time-homogeneous chains the geometric convergence also holds,
but the situation is much simpler in other ways, as a limiting distribution
exists.

Consider an irreducible time-homogeneous chain with I x [ transition
matrix P. The largest eigenvalue P is 1, it is simple, and the corresponding
eigenvector 7* can be chosen strictly positive, 7 = P'm*. These results can
be proven directly (e.g., Cinlar 1975) or they follow, e.g., from the so-called
Perron-Frobenius theorems (e.g., Gantmacher 1959). This key result can be
complemented by the following

Theorem 2.2. Suppose P has the second eigenvalue Az, then
B — 3| = O(|Aa") for all i,j € S. (3)
For a proof, see Seneta (1980, Theorem 4.2 ).

As is clear from the proof in the Appendix, if P is strictly positive, the
speed of convergence is directly related to the minimum entry of P (see also
Behrends (2000, p.83 ff)). Thus, processes with low transition probabilities
tend to need long time-intervals to reach the steady state.

In the application we will meet a situation where the distribution of the
gross sample wp (TF1....,7pr)" and the net sample of the first wave
Tr = (Tr1,...,Trt) may be far away from the steady state distribution.
Yet the differences [):(t) = wp;(t) — mp;(¢) between the two distributions
converge to 0 in a geometric fashion.

3 Data Base and Emprical Findings

As mentioned in the introduction, the data used for the empirical examples are from
the PASS panel study, which is one of the most comprehensive annual household
surveys in Germany in the field of labor market, welfare state and poverty research.
PASS is specifically designed to assess the dynamics of a new means-tested welfare
benefit scheme, called Unemployment Benefit Il (henceforth: UBII), and introduced in
2005 as part of major reform of the German welfare system. We shall focus on the
wave 1 recipient subsample which is a random sample of benefit units drawn directly
from the registry of welfare recipients housed at the Federal Employment Agency
(FEA). For both responding and nonresponding cases of this subsample we have
available linked register data on UBII receipt covering waves 1-5.

Based on this, the presentation at the NR-Workshop will display some empirical
findings on the extent of initial nonresponse bias in UBIl receipt and its' fade-away over
time.
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